Unified modeling based on SVM and SVR for prediction of forest area ratio by human population density and relief energy

Author(s):  
Ryuei Nishii ◽  
Shojiro Tanaka
2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Tomasz Henryk Szymura ◽  
Sandra Murak ◽  
Magdalena Szymura ◽  
Małgorzata Wiktoria Raduła

Historical ecology gives a reference point to explain the contemporary state of particular ecosystems as well as entire landscapes. In this study, we examined the quantitative changes in forest cover in the central part of the Sudety Massif (area ca. 1,120 km<sup>2</sup>) during the last 250 years. The information regarding forest patch distribution and its changes was derived by comparison of maps from 1747 and the 1970s drawn at scales of 1:33,000 and 1:25,000, respectively. To examine the effect of environmental variables (topography and soil conditions) and human population density on forest patch distribution and its changes (afforestation, deforestation), a set of 100 circular plots with a diameter of 1 km was established. The influence of explanatory variables was examined using regression tree methods. Changes at the level of the entire landscape were tested using a set of 25 landscape windows (5 × 5 km each). We found that the overall forest cover increased to 36.4% in the twentieth century from 30.4% in the middle of the eighteenth century. The ancient forests constituted 59% of the total forest area existing more recently. The forests in the eighteenth century occurred mostly on steep slopes, deep valley bottoms, and summits. The land relief explains more than half of the total variation in forest distribution (<em>R</em><sup>2</sup> = 0.56). The effects of soil type and human population density were negligible. The contemporary forest pattern results from both land relief and the historical pattern of human population density in the middle of the eighteenth century (<em>R</em><sup>2</sup> = 0.64), while the effect of soil type was negligible. The pattern of deforestation (<em>R</em><sup>2</sup> = 0.53) and afforestation (<em>R</em><sup>2</sup> = 0.36) results from both land relief as well as recent and nineteenth-century human population density. About 83% of the recent forest area is in physical contact with patches of the ancient forest, which provides an optimistic outlook for the migration of ancient forest species into new areas. Furthermore, changes in landscape structure reveal increased connectivity among forest patches, with potential benefits for the migration of forest species with long-range dispersal.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Christian Körner ◽  
Davnah Urbach ◽  
Jens Paulsen

AbstractMountains are rugged structures in the landscape that are difficult to delineate. Given that they host an overproportional fraction of biodiversity of high ecological and conservational value, conventions on what is mountainous and what not are in need. This short communication aims at explaining the differences among various popular mountain definitions. Defining mountainous terrain is key for global assessments of plant species richness in mountains and their likely responses to climatic change, as well as for assessing the human population density in and around mountainous terrain.


2013 ◽  
Vol 86 ◽  
pp. 166 ◽  
Author(s):  
O. Maurin ◽  
T.J. Davies ◽  
K. Yessoufou ◽  
B.H. Daru ◽  
B.S. Bezeng ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
Author(s):  
Camila Fernanda Moser ◽  
Fernanda Rodrigues de Avila ◽  
Roberto Baptista de Oliveira ◽  
Juliano Morales de Oliveira ◽  
Márcio Borges-Martins ◽  
...  

Abstract This work aimed to catalog the species of reptiles of the Sinos River Basin based on records from scientific collections and data collected in the field. We recorded 65 species, including 46 snakes, nine lizards, five turtles, four amphisbaenians and one caiman. Snakes composed most of the recorded specimens (91.3%), and the three most representative are venomous and of medical importance. The most urban region of the basin (Lowland) has the highest number of records. This fact may be a reflection of the high human population density in this region, which would have favored the encounter of specimens and their sending to scientific collections and research centers. It is worth highlighting that most species with few specimens in the collections are also rarely observed in the wild, such as Clelia hussani and Urostrophus vautieri. This observation makes it feasible that these populations are small or that they are declining.


Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 136 ◽  
Author(s):  
Caitlin Cunningham ◽  
Karen Beazley

Biodiversity hotspots are rich in endemic species and threatened by anthropogenic influences and, thus, considered priorities for conservation. In this study, conservation achievements in 36 global biodiversity hotspots (25 identified in 1988, 10 added in 2011, and one in 2016) were evaluated in relation to changes in human population density and protected area coverage between 1995 and 2015. Population densities were compared against 1995 global averages, and percentages of protected area coverage were compared against area-based targets outlined in Aichi target 11 of the Convention on Biological Diversity (17% by 2020) and calls for half Earth (50%). The two factors (average population density and percent protected area coverage) for each hotspot were then plotted to evaluate relative levels of threat to biodiversity conservation. Average population densities in biodiversity hotspots increased by 36% over the 20-year period, and were double the global average. The protected area target of 17% is achieved in 19 of the 36 hotspots; the 17 hotspots where this target has not been met are economically disadvantaged areas as defined by Gross Domestic Product. In 2015, there are seven fewer hotspots (22 in 1995; 15 in 2015) in the highest threat category (i.e., population density exceeding global average, and protected area coverage less than 17%). In the lowest threat category (i.e., population density below the global average, and a protected area coverage of 17% or more), there are two additional hotspots in 2015 as compared to 1995, attributable to gains in protected area. Only two hotspots achieve a target of 50% protection. Although conservation progress has been made in most global biodiversity hotspots, additional efforts are needed to slow and/or reduce population density and achieve protected area targets. Such conservation efforts are likely to require more coordinated and collaborative initiatives, attention to biodiversity objectives beyond protected areas, and support from the global community.


Sign in / Sign up

Export Citation Format

Share Document