Semantic Segmentation of Land Use / Land Cover (LU/LC) Types Using F-CNNS on Multi-Sensor (Radar-Ir-Optical) Image Data

Author(s):  
Usman Iqbal Ahmed ◽  
Arturo Velasco ◽  
Bernhard Rabus
2020 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Ibochi Andrew Abah ◽  
Richard jeremiah Uriah

Assessing the accuracy of the classification map is an essential area in remote sensing digital image process. This is because a poorly classified map will result in inestimable errors of spatial analysis and modeling arising from the use of such data. This study was designed to evaluate different supervised classification algorithms in terms of accuracy assessment with a view of recommending an appropriate algorithm for image processing. The analysis was carried out using Andoni L.G.A. Rivers State, Nigeria as the study area. Supervised classification of ETM+ 2014 Landsat image of the study area was carried out using ENVI 5.0 software. Seven land use/land cover categories were identified on the image data and appropriate information classes were also assigned using region of interest. The classifiers adopted for the study include SAM, SVM, and MDC and each classifier was set using appropriate thresholds and parameters. The output error matrix of the classified map produced overall accuracy and kappa coefficient for MDC as 94.00% and 0.91, SAM as 64.45% and 0.53, and SVM as 98.92% and 0.98 respectively. The overall accuracy obtained from SVM indicates that a perfect classification map will be produced from the algorithm. The advanced supervised classification should be utilized for classification of land use/ land cover for both high and medium resolution images for improved classification accuracy.


2017 ◽  
Vol 04 (03) ◽  
pp. 272-277
Author(s):  
Tawhida A. Yousif ◽  
Nancy I. Abdalla ◽  
El-Mugheira M. Ibrahim ◽  
Afraa M. E. Adam

2011 ◽  
Vol 13 (5) ◽  
pp. 695-700
Author(s):  
Zhihua TANG ◽  
Xianlong ZHU ◽  
Cheng LI

2019 ◽  
Vol 2 (2) ◽  
pp. 87-99
Author(s):  
Shiva Pokhrel ◽  
Chungla Sherpa

Conservation areas are originally well-known for protecting landscape features and wildlife. They are playing key role in conserving and providing a wide range of ecosystem services, social, economic and cultural benefits as well as vital places for climate mitigation and adaptation. We have analyzed decadal changes in land cover and status of vegetation cover in the conservation area using both national level available data on land use land cover (LULC) changes (1990-2010) and normalized difference vegetation index (NDVI) (2010-2018) in Annapurna conservation area. LULC showed the barren land as the most dominant land cover types in all three different time series 1990, 2000 and 2010 with followed by snow cover, grassland, forest, agriculture and water body. The highest NDVI values were observed at Southern, Southwestern and Southeastern part of conservation area consisting of forest area, shrub land and grassland while toward low to negative in the upper middle to the Northern part of the conservation area.


2019 ◽  
Vol 3 (1) ◽  
pp. 14-27
Author(s):  
Barry Haack ◽  
Ron Mahabir

This analysis determined the best individual band and combinations of various numbers of bands for land use land cover mapping for three sites in Peru. The data included Landsat Thematic Mapper (TM) optical data, PALSAR L-band dual-polarized radar, and derived radar texture images. Spectral signatures were first obtained for each site class and separability between classes determined using divergence measures. Results show that the best single band for analysis was a TM band, which was different for each site. For two of the three sites, the second best band was a radar texture image from a large window size. For all sites the best three bands included two TM bands and a radar texture image. The original PALSAR bands were of limited value. Finally upon further analysis it was determined that no more than six bands were needed for viable classification at each study site.


Sign in / Sign up

Export Citation Format

Share Document