Power quality issues in a distribution network impact of neutral current due to nonlinear loads

Author(s):  
D. Maheswaran ◽  
A. Kalyanasundaram ◽  
S. Kameshwaran
2015 ◽  
Vol 16 (4) ◽  
pp. 357-384 ◽  
Author(s):  
Suresh Mikkili ◽  
Anup Kumar Panda

Abstract Electrical power quality has been an important and growing problem because of the proliferation of nonlinear loads such as power electronic converters in typical power distribution systems in recent years. Particularly, voltage harmonics and power distribution equipment problems result from current harmonics produced by nonlinear loads. The Electronic equipment like, computers, battery chargers, electronic ballasts, variable frequency drives, and switch mode power supplies, generate perilous harmonics and cause enormous economic loss every year. Problems caused by power quality have great adverse economic impact on the utilities and customers. Due to that both power suppliers and power consumers are concerned about the power quality problems and compensation techniques. Power quality has become more and more serious with each passing day. As a result active power filter gains much more attention due to excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) ac power networks with nonlinear loads. However, this is still a technology under development, and many new contributions and new control topologies have been reported in the last few years. It is aimed at providing a broad perspective on the status of APF technology to the researchers and application engineers dealing with power quality issues.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3374-3379

This project work presents a proposed D-STATCOM system, Which is implemented in the distribution network. In the present scenario, the customer or consumer should be supplied with a quality power. The power quality issues like voltage sag, swell, lightning surges etc, can be reduced by using several advanced techniques. Among all these power quality issues voltage sag is considered and has been compensated in this project work by using D-STATCOM. The major advantage of D-STATCOM is that instead of installing the compensating device in the transmission and distribution line, the D-STATCOM unit is implemented at the consumers premises to maintain stable voltage for the connected electrical equipment’s and also to provide safe operation of the electrical equipment’s by extending their life time. The software ie., implemented by using MATLAB Simulink and the results are also verified experimentally by a hardware unit


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2021 ◽  
Author(s):  
Yuehui Chen ◽  
Zhao Huang ◽  
Zhenfeng Duan ◽  
Pengwu Fu ◽  
Guandong Zhou ◽  
...  

This paper solves the problem of reactive power and harmonics compensation in a high-voltage (HV) distribution network supplying nonlinear loads. An inductive filtering (IF) approach where passive filters connect to the filtering winding of a four-winding inductive filtering transformer (FW-IFT) is presented to enhance the power quality of the public grid. This method can not only greatly suppress harmonic currents of the medium and/or low-voltage (LV) side, but also prevent them from flowing into the public grid. The new main circuit topology, where the FW-IFT has specific filtering winding by adopting the ampere-turn balance of the transformer, is presented. On the basis of the structure of the FW-IFT, the magnetic potential balanced equation and inductive filtering technology, its equivalent circuit and mathematical model are established, and the filtering performances are analyzed in detail. Simulation and experimental results rated at SN-10/0.38 of the FW-IFT are presented to prove the efficacy of the comprehensive enhancement of power quality on the grid side.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chitra Natesan ◽  
Senthil Kumar Ajithan ◽  
Priyadharshini Palani ◽  
Prabaakaran Kandhasamy

Microgrid became one of the key spot in research on distributed energy systems. Since the definition of the microgrid is paradigm of the first time, investigation in this area is growing continuously and there are numerous research projects in this moment all over the world. The increased infiltration of nonlinear loads and power electronic interfaced distribution generation system creates power quality issues in the distributed power system. In this paper, a comprehensive survey on microgrid to improve the power quality parameters is taken as the main objective. Furthermore, the detailed investigations are explored in this paper for the enhancement of power quality issues with the help of an optimization technique, filters, controllers, FACTS devices, compensators, and battery storage.


Sign in / Sign up

Export Citation Format

Share Document