Network intrusion detection for cyber security on neuromorphic computing system

Author(s):  
Md Zahangir Alom ◽  
Tarek M. Taha
2020 ◽  
Vol 12 (11) ◽  
pp. 180
Author(s):  
Ahmed Mahfouz ◽  
Abdullah Abuhussein ◽  
Deepak Venugopal ◽  
Sajjan Shiva

Due to the extensive use of computer networks, new risks have arisen, and improving the speed and accuracy of security mechanisms has become a critical need. Although new security tools have been developed, the fast growth of malicious activities continues to be a pressing issue that creates severe threats to network security. Classical security tools such as firewalls are used as a first-line defense against security problems. However, firewalls do not entirely or perfectly eliminate intrusions. Thus, network administrators rely heavily on intrusion detection systems (IDSs) to detect such network intrusion activities. Machine learning (ML) is a practical approach to intrusion detection that, based on data, learns how to differentiate between abnormal and regular traffic. This paper provides a comprehensive analysis of some existing ML classifiers for identifying intrusions in network traffic. It also produces a new reliable dataset called GTCS (Game Theory and Cyber Security) that matches real-world criteria and can be used to assess the performance of the ML classifiers in a detailed experimental evaluation. Finally, the paper proposes an ensemble and adaptive classifier model composed of multiple classifiers with different learning paradigms to address the issue of the accuracy and false alarm rate in IDSs. Our classifiers show high precision and recall rates and use a comprehensive set of features compared to previous work.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Yu ◽  
Jun Long ◽  
Zhiping Cai

Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs). It is quite potential and promising to apply our model in the large-scale and real-world network environments.


Sign in / Sign up

Export Citation Format

Share Document