Determination of Near Field Path Loss in Millimeter Wave Spectrum

Author(s):  
Priyansha Kaurav ◽  
Shiban K. Koul ◽  
Ananjan Basu
2021 ◽  
Vol 11 (6) ◽  
pp. 2788
Author(s):  
Petr Polovodov ◽  
Didier Théron ◽  
Clément Lenoir ◽  
Dominique Deresmes ◽  
Sophie Eliet ◽  
...  

The main objectives of this work are the development of fundamental extensions to existing scanning microwave microscopy (SMM) technology to achieve quantitative complex impedance measurements at the nanoscale. We developed a SMM operating up to 67 GHz inside a scanning electron microscope, providing unique advantages to tackle issues commonly found in open-air SMMs. Operating in the millimeter-wave frequency range induces high collimation of the evanescent electrical fields in the vicinity of the probe apex, resulting in high spatial resolution and enhanced sensitivity. Operating in a vacuum allows for eliminating the water meniscus on the tip apex, which remains a critical issue to address modeling and quantitative analysis at the nanoscale. In addition, a microstrip probing structure was developed to ensure a transverse electromagnetic mode as close as possible to the tip apex, drastically reducing radiation effects and parasitic apex-to-ground capacitances with available SMM probes. As a demonstration, we describe a standard operating procedure for instrumentation configuration, measurements and data analysis. Measurement performance is exemplarily shown on a staircase microcapacitor sample at 30 GHz.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1653
Author(s):  
Ahmed Al-Saman ◽  
Michael Cheffena ◽  
Olakunle Elijah ◽  
Yousef A. Al-Gumaei ◽  
Sharul Kamal Abdul Rahim ◽  
...  

The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond.


Sign in / Sign up

Export Citation Format

Share Document