A Study of Group Mobility Model in Tactical Ad Hoc Networkbased on Normal Cloud Model

Author(s):  
Jian Shu ◽  
Mei Gao ◽  
Limin Sun
2009 ◽  
Vol 19 (11) ◽  
pp. 2999-3010 ◽  
Author(s):  
Hui PENG ◽  
Lin-Cheng SHEN ◽  
Yan-Long BU ◽  
Lin WAN

Author(s):  
ANKUR PATEL ◽  
Shivendu Dubey ◽  
ASHOK VERMA ◽  
SHARDA PD. PATEL

A mobile ad hoc network (MANET) is a collection of wireless mobile nodes forming a dynamic network Topology without the aid of any existing network infrastructure or centralized administration. Each node participating in the network acts as a host and as a router , means they have to forward packets and identify route as well. Random way point is the most common mobility model in most of the simulation based studies of various MANET routing protocols.The Group Mobility Model has been generated by Impact of Mobility Patterns on Routing in Ad-hoc Network(IMPORTANT). In the present communication, we have analyzed the Packet Delivery Ratio (PDR), Average End to End delay, Average Throughput, Normalized Routing Load (NRL) and number of Drop packets in CBR and TCP traffic models using routing protocols namely AODV and DSDV. Research efforts have focused much in evaluating their performance with same number of nodes but divided in different number of groups. Simulations has been carried out using NS-2 simulator.


2019 ◽  
Vol 20 (3) ◽  
pp. 577-590
Author(s):  
Jyotsna Verma ◽  
Nishtha Kesswani

The most widespread notion of mobility model is the representation of mobile node’s movement pattern in the wireless ad hoc networks which has a significant impact on the performance of the network protocols. In this paper, we have proposed an Animal Migration Inspired Group Mobility (AMIGM) model for mobile ad hoc networks based on the migration behavior of animals like, insects, flock of birds, schools of fishes, reptiles, amphibians, etc. The propound model tries to overcome the limitations of the existing mobility models, such as temporal dependencies, spatial dependencies, geographical restrictions and migration of nodes between the group of nodes so that it can realistically model the real world application scenarios. The proposed AMIGM model is based on Animal Migration Optimization (AMO) algorithm, in which each group of nodes has two phases namely, Migration phase and Population updating phase. In the first phase, the model simulates the movement of nodes in the group from one position to another by obeying the swarming laws. In the second phase, the model simulates joining and leaving of the nodes in the group during migration. The protocol dependent and independent performance metrics of the proposed model are compared with Random Waypoint Mobility model (RWP) and Reference Point Group Mobility model (RPGM) through ns-2 simulator.


Sign in / Sign up

Export Citation Format

Share Document