Improved Load Frequency Disturbance Rejection with Two Port Internal Model Control Structure

Author(s):  
Pregada Anudeep ◽  
Tarakanath Kobaku ◽  
R Jeyasenthil ◽  
D K Mohanta
2014 ◽  
Vol 625 ◽  
pp. 478-481
Author(s):  
Lemma Dendena Tufa ◽  
Marappagounder Ramasamy

A novel PID controller identification method based on internal model control structure is proposed. The proposed method avoids the necessity of approximating the time delay for designing the PID controller. It results in a robust and effective PID controller tuning. The method is effective for both time constant and time delay dominant systems, with much improved performance for the latter case.


Author(s):  
Dazi Li ◽  
Xingyu He

Many processes in the industry can be modeled as fractional order, research on the fractional order become more and more popular. Usually, controllers such as fractional order PID (FOPID) or fractional active disturbance rejection control (FADRC) are used to control single-input-single-output (SISO) fractional order system. However, when it comes to fractional order two-input-two-output (TITO) processes, few research focus on this. In this paper, a new design method for fractional order control based on multivariable non-internal model control with inverted decoupling is proposed to handle non-integer order two-input-two-output system. The controller proposed in this paper just has two parameters to tune compared with the five parameters of the FOPID controller, and the controller structure can be achieved by internal model control (IMC) method which means it is easy to implement. The parameters tuning method used in this paper is based on frequency domain strategy. Compared with integer order situation, fractional order method is more complex, because the calculation of the frequency domain characteristics is difficult. The controller proposed in this paper is robust to process gain variations, what’s more, it provides ideal performance for both set point-tracking and disturbance rejection. Numerical results are given to show the performance of the proposed controller.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Guohai Liu ◽  
Jun Yuan ◽  
Wenxiang Zhao ◽  
Yaojie Mi

Multimotor drive system is widely applied in industrial control system. Considering the characteristics of multi-input multioutput, nonlinear, strong-coupling, and time-varying delay in two-motor drive systems, this paper proposes a new Smith internal model (SIM) control method, which is based on neural network generalized inverse (NNGI). This control strategy adopts the NNGI system to settle the decoupling issue and utilizes the SIM control structure to solve the delay problem. The NNGI method can decouple the original system into several composite pseudolinear subsystems and also complete the pole-zero allocation of subsystems. Furthermore, based on the precise model of pseudolinear system, the proposed SIM control structure is used to compensate the network delay and enhance the interference resisting the ability of the whole system. Both simulation and experimental results are given, verifying that the proposed control strategy can effectively solve the decoupling problem and exhibits the strong robustness to load impact disturbance at various operations.


Sign in / Sign up

Export Citation Format

Share Document