Optimum high power factor power converter design for small sized wind turbines

Author(s):  
A.W. Ahmad
Author(s):  
Sinu KJ ◽  
G. Ranganathan

<p>This paper presents a new hydro energy based dc-dc PFC sepic based buck converter for marine lighting applications. The major advantage of the proposed power converter is high power factor and low THD with higher efficiency. SEPIC converter produces continuous smooth ripple free current because of two inductors in series in line in its circuit. Sepic converter produces lower switching losses because of lower voltage stress on power switch employed compared to other buck-boost converter topologies. Tidal wave energy is converted into mechanical energy with the help of a hydro turbine which drives a permanent magnet synchronous generator to produce three phase ac output voltage. It produces a low ac voltage which is converted into DC using passive diode rectifier and fed to sepic converter for voltage regulation as well as to improve quality of power supply such as high power factor, low THD. The proposed sepic based power converter for marine lighting application is simulated in MATLAB/Simulink environment for verifying the performance of proposed scheme.</p>


2010 ◽  
Vol 4 (2) ◽  
pp. 1-6
Author(s):  
S. Sankar ◽  
◽  
G. Gokula Krishnan ◽  

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.


Sign in / Sign up

Export Citation Format

Share Document