High voltage DC protection of high voltage DC next generation smart datacom power distribution with solid state hybride circuit breakers and arc fault detection modules (AFDM)

Intelec 2012 ◽  
2012 ◽  
Author(s):  
Richard Mehl ◽  
Christian Strobl
Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3167
Author(s):  
Nils H. van der Blij ◽  
Pavel Purgat ◽  
Thiago B. Soeiro ◽  
Laura M. Ramirez-Elizondo ◽  
Matthijs T. J. Spaan ◽  
...  

Since the voltages and currents in dc grids do not have a natural zero-crossing, the protection of these grids is more challenging than the protection of conventional ac grids. Literature presents several unit and non-unit protection schemes that rely on communication, or knowledge about the system’s topology and parameters in order to achieve selective protection in these grids. However, communication complicates fast fault detection and interruption, and a system’s parameters are subject to uncertainty and change. This paper demonstrates that, in low voltage dc grids, faults propagate fast through the grid and interrupted inductive currents commutate to non-faulted sections of the grid, which both can cause circuit breakers in non-faulted sections to trip. A decentralized plug-and-play protection scheme is proposed that ensures selectivity via an augmented solid-state circuit breaker topology and by utilizing the proposed time-current characteristic. It is experimentally shown that the proposed scheme provides secure and selective fault interruption for radial and meshed low voltage dc grids under various conditions.


Author(s):  
M.P.J. Gaudreau ◽  
J.A. Casey ◽  
T.J. Hawkey ◽  
M.A. Kempkes ◽  
J.M. Mulvaney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document