Melt spinning process and its effect on the magnetic properties and structures of SM(CO, FE, CU, ZR)Z melt-spun ribbons

Author(s):  
Z. Liu ◽  
Y. Fang ◽  
W. Sun ◽  
H. Chen ◽  
M. Zhu ◽  
...  
2015 ◽  
Vol 51 (11) ◽  
pp. 1-4
Author(s):  
Zhiying Liu ◽  
Yikun Fang ◽  
Wei Sun ◽  
Hongsheng Chen ◽  
Minggang Zhu ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
pp. 2552-2557
Author(s):  
Nguyen Hai Yen ◽  
Nguyen Hoang Ha ◽  
Pham Thi Thanh ◽  
Nguyen Huy Ngoc ◽  
Tran Dang Thanh ◽  
...  

In this work, we investigated magnetic properties and magnetocaloric effect in Fe90−xCoxZr7Cu1B2 (x = 0, 1, 2, 3 and 4) melt-spun ribbons. The ribbons were prepared by using a melt-spinning method with a tangential velocity of a copper wheel of 40 m·s-1. The obtained ribbons are almost amorphous. The alloys exhibit typical soft magnetic behavior with low coercivity at room temperature. A minor replacement of Fe by Co gives an increment in Curie temperature (TC) of the alloys to higher temperatures. The TC of the alloys increases from 242 to 342 K with an increase of x from 0 to 4. Maximum magnetic entropy change, ΔSm max, of the alloys, was found to be larger than 0.7 J·kg-1·K-1 in a magnetic field change ΔH of 12 kOe for all the concentrations of Co. High refrigerant capacitys (RC >100 J ·kg-1 with ΔH = 12 kOe) at room temperature region have been obtained for the alloys. The large magnetocaloric effect near room temperature suggests that the alloys can be considered as magnetic refrigerants in the range of 250–350 K.


2014 ◽  
Vol 782 ◽  
pp. 23-30 ◽  
Author(s):  
Wojciech Maziarz ◽  
Paweł Czaja ◽  
Jan Dutkiewicz ◽  
Rafał Wróblewski ◽  
Marcin Leonowicz

Four alloys with nominal compositions Ni46Mn41.5-xFexSn12.5 (x=0, 2, 4, 6 at.%) were cast in an induction vacuum furnace and homogenized. Then they were melted in quartz tubes and ejected onto a rotating copper wheel to produce ribbons. The X-Ray phase analyses of as melt spun ribbons have shown that in both, the ternary as well as in the quaternary alloys a single phase of the Heusler L21 type ordered structure was found. The characteristic temperatures of magnetic (TC) and martensitic (Ms) transformations were determined by a vibrating sample magnetometer (VSM). Both the Ms and TC increase with the increase of Fe content in all alloys, which is in accordance with the theory of valence electron concentration (e/a) influence on Ms. The phase structures, chemical compositions, grains sizes and type of microsegregation were characterized by transmission electron microscope (TEM). The equi-axed grains of size from 0.95 to 1.7 μm were observed in all ribbons. The grains posses the L21 structure at room temperature, however in the alloys with higher Fe content the different type of martensite was observed at the grain boundaries of L21 phase. Appearance of this martensite was explained in relation to microsegregation of particular elements during melt spinning process and simultaneous change in the e/a ratio.


2006 ◽  
Vol 514-516 ◽  
pp. 359-363 ◽  
Author(s):  
Sofoklis S. Makridis ◽  
Eleni Pavlidou ◽  
A. Neudert ◽  
J. McCord ◽  
Rudolf Schäfer ◽  
...  

The Sm(Co0.71Fe0.1Cu0.12Zr0.04B0.03)7.5 (2:17 type magnet) melt spun ribbons have been produced from bulk as cast samples at low (5 m/sec) to medium (40 m/sec) wheel speed by the melt spinning technique. The crystallographic texture on wheel side, the microstructural characteristics and magnetic properties have been investigated. The soft magnetic fcc-Co forms a very high degree of texture especially at low velocities but for the first time a degree of texturing has been remarked on fcc-Co grains. Diffraction patterns have been traced by x-ray scattering using Cu-Kα radiation on the wheel and free side of the ribbons. In the pattern of ribbons which have been produced at 5 m/sec the (002) plane of fcc-Co is almost the dominant peak while at 40 m/sec this peak diminishes in parallel to the appearance of the structure type TbCu7 and (111) plane of fcc-Co structure. Scanning electron microscopy on the wheel side of the ribbons has been used to observe microstructural characteristics and showed that the formation of texture is attributed to the appearance of dendrites, with their long axis parallel to the longitudinal direction of the ribbons. Dendrites’ density depends on the wheel speed of the roller and boron content. It decreases as the velocity increases while for constant velocity of about 40 m/sec, higher boron content stabilizes higher degree of texturing. Magnetic properties are also examined from low to medium wheel speed by also using the magnetooptical Kerr microscopy. Therefore coercive field as high as 3.4 kOe and reduced remanence (mr) of ~0.76 has been detected from the hysteresis curve for as spun Sm Co0.71Fe0.1Cu0.12Zr0.04B0.03)7.5 ribbons at 5 m/sec.


2002 ◽  
Vol 91 (11) ◽  
pp. 9267-9271 ◽  
Author(s):  
Z. G. Sun ◽  
W. Löser ◽  
J. Eckert ◽  
K.-H. Müller ◽  
L. Schultz

1996 ◽  
Vol 460 ◽  
Author(s):  
Jinmin Chen ◽  
W. E. Frazier ◽  
E. V. Barrera

ABSTRACTIn an effort to expand the composition range over which Al3Ti is stable, various amounts of niobium were substituted for titanium and processed by melt-spinning. Several samples were annealed both at 600°C and 1000°C for 24 hours. The effects of processing parameters such as wheel speed, the amount of niobium, and annealing temperatures on the structure were investigated by XRD and EXAFS. XRD showed that for all the samples the only structure present was DO22-The DO22 structure was stable even after the high temperature heat treatments. By means of EXAFS, niobium atoms were observed to occupy titanium sites in the DO22 structure. Furthermore, in the unannealed samples, increasing wheel speed of the melt spinning process or the niobium concentration tended to distort the crystal structure. It was observed that Ti EXAFS had different results from the Nb EXAFS beyond their occupying similar sites, which suggested there may exist some composition zones, i.e. rich Nb zone or rich Ti zones, although the structures present were still DO22. The samples were found to experience different distortions as a function of annealing temperatures.


2018 ◽  
Vol 31 (11) ◽  
pp. 3705-3710 ◽  
Author(s):  
Chengfu Xu ◽  
Kanghua Chen ◽  
Zhengfei Gu ◽  
Guanghui Rao ◽  
Gang Cheng ◽  
...  

2011 ◽  
Vol 109 (7) ◽  
pp. 07A925 ◽  
Author(s):  
Tetsuji Saito ◽  
Keiichi Sudo

Sign in / Sign up

Export Citation Format

Share Document