Error Resilient Machine Learning for Safety-Critical Systems: Position Paper

Author(s):  
Karthik Pattabiraman ◽  
Guanpeng Li ◽  
Zitao Chen
2020 ◽  
Vol 10 (8) ◽  
pp. 2670 ◽  
Author(s):  
Jaehyung An ◽  
Alexey Mikhaylov ◽  
Keunwoo Kim

This article presents a machine learning approach in a heterogeneous group of algorithms in a transport type model for the optimal distribution of tasks in safety-critical systems (SCS). Applied systems in the working area identify the determination of their parameters. Accordingly, in this article, machine learning models are implemented on various subsets of our transformed data and repeatedly calculated the bounds for 90 percent tolerance intervals, each time noting whether or not they contained the actual value of X. This approach considers the features of algorithms for solving such important classes of problem management as the allocation of limited resources in multi-agent SCS and their most important properties. Modeling for the error was normally distributed. The results are obtained, including the situation requiring solutions, recorded and a sample is made out of the observations. This paper summarizes the literature review on the machine learning approach into new implication research. The empirical research shows the effect of the optimal algorithm for transport safety-critical systems.


2021 ◽  
Vol 11 (24) ◽  
pp. 11854
Author(s):  
Divish Rengasamy ◽  
Benjamin C. Rothwell ◽  
Grazziela P. Figueredo

When machine learning supports decision-making in safety-critical systems, it is important to verify and understand the reasons why a particular output is produced. Although feature importance calculation approaches assist in interpretation, there is a lack of consensus regarding how features’ importance is quantified, which makes the explanations offered for the outcomes mostly unreliable. A possible solution to address the lack of agreement is to combine the results from multiple feature importance quantifiers to reduce the variance in estimates and to improve the quality of explanations. Our hypothesis is that this leads to more robust and trustworthy explanations of the contribution of each feature to machine learning predictions. To test this hypothesis, we propose an extensible model-agnostic framework divided in four main parts: (i) traditional data pre-processing and preparation for predictive machine learning models, (ii) predictive machine learning, (iii) feature importance quantification, and (iv) feature importance decision fusion using an ensemble strategy. Our approach is tested on synthetic data, where the ground truth is known. We compare different fusion approaches and their results for both training and test sets. We also investigate how different characteristics within the datasets affect the quality of the feature importance ensembles studied. The results show that, overall, our feature importance ensemble framework produces 15% less feature importance errors compared with existing methods. Additionally, the results reveal that different levels of noise in the datasets do not affect the feature importance ensembles’ ability to accurately quantify feature importance, whereas the feature importance quantification error increases with the number of features and number of orthogonal informative features. We also discuss the implications of our findings on the quality of explanations provided to safety-critical systems.


2011 ◽  
Vol 31 (1) ◽  
pp. 281-285
Author(s):  
Huan HE ◽  
Zhong-wei XU ◽  
Gang YU ◽  
Shi-yu YANG

Sign in / Sign up

Export Citation Format

Share Document