scholarly journals FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks

Author(s):  
Md. Khaledur Rahman ◽  
Majedul Haque Sujon ◽  
Ariful Azad
Author(s):  
Jiafeng Cheng ◽  
Qianqian Wang ◽  
Zhiqiang Tao ◽  
Deyan Xie ◽  
Quanxue Gao

Graph neural networks (GNNs) have made considerable achievements in processing graph-structured data. However, existing methods can not allocate learnable weights to different nodes in the neighborhood and lack of robustness on account of neglecting both node attributes and graph reconstruction. Moreover, most of multi-view GNNs mainly focus on the case of multiple graphs, while designing GNNs for solving graph-structured data of multi-view attributes is still under-explored. In this paper, we propose a novel Multi-View Attribute Graph Convolution Networks (MAGCN) model for the clustering task. MAGCN is designed with two-pathway encoders that map graph embedding features and learn the view-consistency information. Specifically, the first pathway develops multi-view attribute graph attention networks to reduce the noise/redundancy and learn the graph embedding features for each multi-view graph data. The second pathway develops consistent embedding encoders to capture the geometric relationship and probability distribution consistency among different views, which adaptively finds a consistent clustering embedding space for multi-view attributes. Experiments on three benchmark graph datasets show the superiority of our method compared with several state-of-the-art algorithms.


2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2020 ◽  
Author(s):  
Zheng Lian ◽  
Jianhua Tao ◽  
Bin Liu ◽  
Jian Huang ◽  
Zhanlei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document