Periodic Extended Kalman Filter to Estimate Rowing Motion Indoors Using a Wearable Ultra-Wideband Ranging Positioning System

Author(s):  
Luis Rodriguez Mendoza ◽  
Kyle O'Keefe
Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6829
Author(s):  
Luke Wicent F. Sy ◽  
Nigel H. Lovell ◽  
Stephen J. Redmond

Tracking the kinematics of human movement usually requires the use of equipment that constrains the user within a room (e.g., optical motion capture systems), or requires the use of a conspicuous body-worn measurement system (e.g., inertial measurement units (IMUs) attached to each body segment). This paper presents a novel Lie group constrained extended Kalman filter to estimate lower limb kinematics using IMU and inter-IMU distance measurements in a reduced sensor count configuration. The algorithm iterates through the prediction (kinematic equations), measurement (pelvis height assumption/inter-IMU distance measurements, zero velocity update for feet/ankles, flat-floor assumption for feet/ankles, and covariance limiter), and constraint update (formulation of hinged knee joints and ball-and-socket hip joints). The knee and hip joint angle root-mean-square errors in the sagittal plane for straight walking were 7.6±2.6∘ and 6.6±2.7∘, respectively, while the correlation coefficients were 0.95±0.03 and 0.87±0.16, respectively. Furthermore, experiments using simulated inter-IMU distance measurements show that performance improved substantially for dynamic movements, even at large noise levels (σ=0.2 m). However, further validation is recommended with actual distance measurement sensors, such as ultra-wideband ranging sensors.


2017 ◽  
Vol 9 (3) ◽  
pp. 169-186 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Wei Meng ◽  
Lihua Xie ◽  
Rodney Teo

This article puts forward an indirect cooperative relative localization method to estimate the position of unmanned aerial vehicles (UAVs) relative to their neighbors based solely on distance and self-displacement measurements in GPS denied environments. Our method consists of two stages. Initially, assuming no knowledge about its own and neighbors’ states and limited by the environment or task constraints, each unmanned aerial vehicle (UAV) solves an active 2D relative localization problem to obtain an estimate of its initial position relative to a static hovering quadcopter (a.k.a. beacon), which is subsequently refined by the extended Kalman filter to account for the noise in distance and displacement measurements. Starting with the refined initial relative localization guess, the second stage generalizes the extended Kalman filter strategy to the case where all unmanned aerial vehicles (UAV) move simultaneously. In this stage, each unmanned aerial vehicle (UAV) carries out cooperative localization through the inter-unmanned aerial vehicle distance given by ultra-wideband and exchanging the self-displacements of neighboring unmanned aerial vehicles (UAV). Extensive simulations and flight experiments are presented to corroborate the effectiveness of our proposed relative localization initialization strategy and algorithm.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Beom-Hun Kim ◽  
Seung-Jo Han ◽  
Goo-Rak Kwon ◽  
Jae-Young Pyun

Indoor positioning systems (IPSs) have been discussed for use in entertainment, home automation, rescue, surveillance, and healthcare applications. In this paper, we present an IPS that uses an impulse radio-ultra-wideband (IR-UWB) radar network. This radar network system requires at least two radar devices to determine the current coordinates of a moving person. However, one can enlarge the monitoring area by adding more radar sensors. To track moving targets in indoor environments, for example, patients in hospitals or intruders in a home, signal processing procedures for tracking should be applied to the raw data measured using IR-UWB radars. This paper presents the signal processing method required for robust target tracking in a radar network, that is, an iterative extended Kalman filter- (IEKF-) based object tracking method, which uses two IR-UWB radars to measure the coordinates of the targets. The proposed IEKF tracking method is compared to the conventional extended Kalman filter (EKF) method. The results verify that the IEKF method improves the performance of 2D target tracking in a real-time system.


Author(s):  
Stian S. Sandøy ◽  
Ingrid Schjølberg

This paper presents a filter for underwater positioning in an aquaculture environment with demanding weather conditions. The positioning system is based on acoustic transponders mounted at a net pen on the sea surface. The transponders are exposed to oscillations due to wave disturbance. This will have an impact on the accuracy of the positioning system. An extended Kalman filter (EKF) solution has been proposed including a wave motion model integrated with the pseudo-range measurements from the transponders. Simulations show that the proposed filter compensates well for the disturbances.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xin Li ◽  
Yan Wang ◽  
Kourosh Khoshelham

The fusion of ultra-wideband (UWB) and inertial measurement unit (IMU) is an effective solution to overcome the challenges of UWB in nonline-of-sight (NLOS) conditions and error accumulation of inertial positioning in indoor environments. However, existing systems are based on foot-mounted or body-worn IMUs, which limit the application of the system to specific practical scenarios. In this paper, we propose the fusion of UWB and pedestrian dead reckoning (PDR) using smartphone IMU, which has the potential to provide a universal solution to indoor positioning. The PDR algorithm is based on low-pass filtering of acceleration data and time thresholding to estimate the step length. According to different movement patterns of pedestrians, such as walking and running, several step models are comparatively analyzed to determine the appropriate model and related parameters of the step length. For the PDR direction calculation, the Madgwick algorithm is adopted to improve the calculation accuracy of the heading algorithm. The proposed UWB/PDR fusion algorithm is based on the extended Kalman filter (EKF), in which the Mahalanobis distance from the observation to the prior distribution is used to suppress the influence of abnormal UWB data on the positioning results. Experimental results show that the algorithm is robust to the intermittent noise, continuous noise, signal interruption, and other abnormalities of the UWB data.


Sign in / Sign up

Export Citation Format

Share Document