Deterministic entanglement between three quantum systems in cavity quantum electrodynamics

Author(s):  
A. Rauschenbeutel ◽  
G. Nogues ◽  
S. Osnaghi ◽  
P. Bertet ◽  
M. Brune ◽  
...  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guillermo García-Pérez ◽  
Matteo A. C. Rossi ◽  
Sabrina Maniscalco

AbstractThe advent of noisy intermediate-scale quantum (NISQ) technology is changing rapidly the landscape and modality of research in quantum physics. NISQ devices, such as the IBM Q Experience, have very recently proven their capability as experimental platforms accessible to everyone around the globe. Until now, IBM Q Experience processors have mostly been used for quantum computation and simulation of closed systems. Here, we show that these devices are also able to implement a great variety of paradigmatic open quantum systems models, hence providing a robust and flexible testbed for open quantum systems theory. During the last decade an increasing number of experiments have successfully tackled the task of simulating open quantum systems in different platforms, from linear optics to trapped ions, from nuclear magnetic resonance (NMR) to cavity quantum electrodynamics. Generally, each individual experiment demonstrates a specific open quantum system model, or at most a specific class. Our main result is to prove the great versatility of the IBM Q Experience processors. Indeed, we experimentally implement one and two-qubit open quantum systems, both unital and non-unital dynamics, Markovian and non-Markovian evolutions. Moreover, we realise proof-of-principle reservoir engineering for entangled state generation, demonstrate collisional models, and verify revivals of quantum channel capacity and extractable work, caused by memory effects. All these results are obtained using IBM Q Experience processors publicly available and remotely accessible online.


2021 ◽  
Author(s):  
Alex Naiman ◽  
Yoel Sebbag ◽  
Eliran Talker ◽  
Yefim Barash ◽  
Liron Stern ◽  
...  

Abstract The miniaturization of atomic quantum systems and their integration into silicon microchips paves the way for a wide variety of applications in quantum computing, metrology and magnetometry. A particular interest is found in the integration of quantum entities into the micro and nanoscale photonic resonators to implement chip scale cavity quantum electrodynamics. Here we demonstrate the interaction of a chip scale micro disc resonator with thermal rubidium atoms via the evanescent field of the mode. We observe high Rabi splitting of 4 GHz in the transmission spectrum of the coupled photonic-atomic system due to collective enhancement of the coupling rate by the ensemble of hot atoms and present a theoretical model to support the measured results. This result corresponds to atom-photon cooperativity of ~ 1. Such cooperativity is the onset for quantum interference, needed for high-end chip scale quantum technologies, such as such as quantum manipulation, quantum information storage and processing, and few photon switching.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1133
Author(s):  
Iosif Meyerov ◽  
Evgeny Kozinov ◽  
Alexey Liniov ◽  
Valentin Volokitin ◽  
Igor Yusipov ◽  
...  

With their constantly increasing peak performance and memory capacity, modern supercomputers offer new perspectives on numerical studies of open many-body quantum systems. These systems are often modeled by using Markovian quantum master equations describing the evolution of the system density operators. In this paper, we address master equations of the Lindblad form, which are a popular theoretical tools in quantum optics, cavity quantum electrodynamics, and optomechanics. By using the generalized Gell–Mann matrices as a basis, any Lindblad equation can be transformed into a system of ordinary differential equations with real coefficients. Recently, we presented an implementation of the transformation with the computational complexity, scaling as O(N5logN) for dense Lindbaldians and O(N3logN) for sparse ones. However, infeasible memory costs remains a serious obstacle on the way to large models. Here, we present a parallel cluster-based implementation of the algorithm and demonstrate that it allows us to integrate a sparse Lindbladian model of the dimension N=2000 and a dense random Lindbladian model of the dimension N=200 by using 25 nodes with 64 GB RAM per node.


2018 ◽  
Vol 115 (50) ◽  
pp. 12662-12667 ◽  
Author(s):  
Po-Hsun Ho ◽  
Damon B. Farmer ◽  
George S. Tulevski ◽  
Shu-Jen Han ◽  
Douglas M. Bishop ◽  
...  

In cavity quantum electrodynamics, optical emitters that are strongly coupled to cavities give rise to polaritons with characteristics of both the emitters and the cavity excitations. We show that carbon nanotubes can be crystallized into chip-scale, two-dimensionally ordered films and that this material enables intrinsically ultrastrong emitter–cavity interactions: Rather than interacting with external cavities, nanotube excitons couple to the near-infrared plasmon resonances of the nanotubes themselves. Our polycrystalline nanotube films have a hexagonal crystal structure, ∼25-nm domains, and a 1.74-nm lattice constant. With this extremely high nanotube density and nearly ideal plasmon–exciton spatial overlap, plasmon–exciton coupling strengths reach 0.5 eV, which is 75% of the bare exciton energy and a near record for room-temperature ultrastrong coupling. Crystallized nanotube films represent a milestone in nanomaterials assembly and provide a compelling foundation for high-ampacity conductors, low-power optical switches, and tunable optical antennas.


2006 ◽  
Vol 69 (5) ◽  
pp. 1325-1382 ◽  
Author(s):  
Herbert Walther ◽  
Benjamin T H Varcoe ◽  
Berthold-Georg Englert ◽  
Thomas Becker

NANO ◽  
2007 ◽  
Vol 02 (01) ◽  
pp. 1-13 ◽  
Author(s):  
BONG-SHIK SONG ◽  
TAKASHI ASANO ◽  
SUSUMU NODA

This paper presents a review on the selected highlights of highly-functional devices in two-dimensional photonic crystals slab structure. By introducing artificial defects in the photonic crystals (that is, defect engineering), novel photonic devices of line-defect waveguides and point-defect nanocavity are demonstrated. For more efficient manipulation of photons, the fundamentals of heterostructure photonic crystals are also reviewed. Heterostructures consist of multiple photonic crystals with different lattice-constants and they provide further high-functionalities such as multiple wavelength operation while maintaining optimized performance and the enhancement of photon manipulation efficiency. Because of the importance of high quality (Q) nanocavity for realization of nanophotonic devices, we also review the design rule of high Q nanocavities and present recent experiments on nanocavities with Q factors in excess of one million (~ 1.2 × 106). The progress of defect engineering and heterostructure in two-dimensional photonic crystals slab structure will accelerate development in ultrasmall photonic chips, cavity quantum electrodynamics, optical sensors, etc.


Sign in / Sign up

Export Citation Format

Share Document