Ultrafast dynamics of photoinduced phase transition - the role of time-resolved X-ray measurement

Author(s):  
S. Koshihara ◽  
S. Adachi ◽  
H. Cailleau ◽  
E. Collet ◽  
H. Yamochi ◽  
...  
2015 ◽  
Vol 44 (36) ◽  
pp. 16036-16044 ◽  
Author(s):  
Emily Reynolds ◽  
Gordon J. Thorogood ◽  
Maxim Avdeev ◽  
Helen E. A. Brand ◽  
Qinfen Gu ◽  
...  

High temperature synchrotron X-ray and neutron diffraction powder diffraction studies of the uranium perovskites Ba2CaUO6and BaSrCaUO6reveal unusual phase transition behavior associated with the progressive loss of cooperative octahedral tilting.


2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Yujin Kim ◽  
Daewoong Nam ◽  
Rory Ma ◽  
Sangsoo Kim ◽  
Myung-jin Kim ◽  
...  

Understanding the ultrafast dynamics of molecules is of fundamental importance. Time-resolved X-ray absorption spectroscopy (TR-XAS) is a powerful spectroscopic technique for unveiling the time-dependent structural and electronic information of molecules that has been widely applied in various fields. Herein, the design and technical achievement of a newly developed experimental apparatus for TR-XAS measurements in the tender X-ray range with X-ray free-electron lasers (XFELs) at the Pohang Accelerator Laboratory XFEL (PAL-XFEL) are described. Femtosecond TR-XAS measurements were conducted at the Ru L 3-edge of well known photosensitizer tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]2+) in water. The results indicate ultrafast photoinduced electron transfer from the Ru center to the ligand, which demonstrates that the newly designed setup is applicable for monitoring ultrafast reactions in the femtosecond domain.


Biochemistry ◽  
1992 ◽  
Vol 31 (4) ◽  
pp. 1081-1092 ◽  
Author(s):  
Mark W. Tate ◽  
Erramilli Shyamsunder ◽  
Sol M. Gruner ◽  
Kevin L. D'Amico

2016 ◽  
Vol 113 (8) ◽  
pp. 2306-2311 ◽  
Author(s):  
Younss Ait-Mou ◽  
Karen Hsu ◽  
Gerrie P. Farman ◽  
Mohit Kumar ◽  
Marion L. Greaser ◽  
...  

The Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.


2013 ◽  
Vol 160 (5) ◽  
pp. A3061-A3065 ◽  
Author(s):  
Yuki Orikasa ◽  
Takehiro Maeda ◽  
Yukinori Koyama ◽  
Taketoshi Minato ◽  
Haruno Murayama ◽  
...  

Langmuir ◽  
2010 ◽  
Vol 26 (14) ◽  
pp. 11605-11608 ◽  
Author(s):  
Hiroyuki Mori ◽  
Shoichi Kutsumizu ◽  
Kazuya Saito ◽  
Katsuhiro Yamamoto ◽  
Shinichi Sakurai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document