Virtual Flux Droop Control with Constant Switching Frequency for Power Sharing Between Parallel Inverters in Islanded Microgrids

Author(s):  
Saheb Khanabdal ◽  
Mahdi Banejad ◽  
Frede Blaabjerg ◽  
Nasser Hosseinzadeh
Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 948-953
Author(s):  
Aimeng Wang ◽  
Jia Zhang

AbstractThis paper investigates the problem of reactive power sharing based on virtual flux droop method. Firstly, flux droop control method is derived, where complicated multiple feedback loops and parameter regulation are avoided. Then, the reasons for inaccurate reactive power sharing are theoretically analyzed. Further, a novel reactive power control scheme is proposed which consists of three parts: compensation control, voltage recovery control and flux droop control. Finally, the proposed reactive power control strategy is verified in a simplified microgrid model with two parallel DGs. The simulation results show that the proposed control scheme can achieve accurate reactive power sharing and zero deviation of voltage. Meanwhile, it has some advantages of simple control and excellent dynamic and static performance.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4893
Author(s):  
Saheb Khanabdal ◽  
Mahdi Banejad ◽  
Frede Blaabjerg ◽  
Nasser Hosseinzadeh

The droop control scheme based on Q − ⍵ and P − V characteristics is conventionally employed to share the load power among sources in an islanded low-voltage microgrid with resistive line impedances. However, it suffers from poor active power sharing, and is vulnerable to sustained deviations in frequency and voltage. Therefore, accurate power sharing and maintaining the frequency and voltage in the desired ranges are challenging. This paper proposes a novel microgrid control strategy to address these issues. The proposed strategy consists of a virtual flux droop and a model predictive control, in which the virtual flux is the time integral of the voltage. Firstly, the novel virtual flux droop control is proposed to accurately control the power sharing among DGs. Then, the model predictive flux control is employed to generate the appropriate switching signals. The proposed strategy is simple without needing multiple feedback control loops. In addition, pulse width modulation is not required and tuning challenges for PI regulators are avoided. In order to evaluate the effectiveness of the proposed microgrid control strategy, simulation analysis is carried out in Matlab/Simulink software environment. The results show that accurate power sharing is achieved while a good dynamic response is provided. Furthermore, the voltage and frequency deviations are significantly improved.


2018 ◽  
Vol 33 (2) ◽  
pp. 1264-1274 ◽  
Author(s):  
Weiyu Wang ◽  
Yong Li ◽  
Yijia Cao ◽  
Ulf Hager ◽  
Christian Rehtanz
Keyword(s):  

2015 ◽  
Vol 30 (6) ◽  
pp. 3133-3141 ◽  
Author(s):  
Hua Han ◽  
Yao Liu ◽  
Yao Sun ◽  
Mei Su ◽  
Josep M. Guerrero

2016 ◽  
Vol 19 (4) ◽  
pp. 45-64
Author(s):  
Phuong Minh Le ◽  
Duy Vo Duc Hoang ◽  
Hoa Thi Xuan Pham ◽  
Huy Minh Nguyen

This paper presents a new load sharing control between paralleled three-phase inverters in an islanded-microgrid based on the line impedance estimation online by the use of the Kalman filter. We can solve the mismatch of power sharing when the line impedance changes due to the temperature and frequency, significant differences of line parameters and requirements of Plug-and-Play mode of inverters connected to the microgrid. Moreover, the paper also presents a new Droop control method working with the line impedance which is different from the Droop traditional algorithm when the line impedance is assumed pure resistance R or pure inductance X. In the paper, the line impedance estimation for parallel inverters uses the least squares method combined with Kalman filter. In addition, secondary control loops are designed to restore the voltage amplitude and frequency of the microgrid by using a combined nominal value SOGI-PLL with generalized integral block and phase lock loop to exactly monitor the voltage magnitude and frequency phase at common PCC. Control model has been simulated in Matlab/Simulink with three voltage source inverters connected in parallel for different ratios of the power sharing. The simulation results have shown the accuracy of the proposed control method. Therefore, the proposed adaptive droop control method based on line impedance estimation can be an alternative one for load sharing control in islanded microgrids.


Author(s):  
Javad Fattahi ◽  
Joan E. Haysom ◽  
John Cook ◽  
Karin Hinzer ◽  
Henry Schriemer

Sign in / Sign up

Export Citation Format

Share Document