Modeling and SIL simulation of an oscillating water column for ocean energy conversion

Author(s):  
Fares M'zoughi ◽  
Soufiene Bouallegue ◽  
Mounir Ayadi
2019 ◽  
Vol 18 (1) ◽  
pp. 99
Author(s):  
A. L. dos Santos ◽  
L. A. Isoldi ◽  
L. A. O. Rocha ◽  
M. N. Gomes ◽  
R. S. Viera ◽  
...  

The present work brings a numerical study of an energy conversion device which takes energy from the waves through an oscillating water column (OWC), considering an impulse turbine with rotation in the chimney region through the implementation of a movable mesh model. More precisely, a turbulent, transient and incompressible air flow is numerically simulated in a two-dimensional domain, which mimics an OWC device chamber. The objectives are the verification of the numerical model with movable mesh of the impulse turbine in the free domain from the comparison with the literature and, later, the study of the impulse turbine inserted in the geometry of the OWC device. In order to perform the numerical simulation on the generated domains, the Finite Volume Method (FVM) is used to solve the mass and momentum conservation equations. For the closure of the turbulence, the URANS (Unsteady Reynolds Averaged Navier-Stokes) model k-ω SST is used. To verify the numerical model employed, drag coefficients, lift, torque and power are obtained and compared with studies in the literature. The simulations are performed considering a flow with a Reynolds number of ReD = 867,000, air as the working fluid and a tip speed ratio of λ = 2. For the verification case, coefficients similar to those previously predicted in the literature were obtained. For the case where the OWC device was inserted it was possible to observe an intensification of the field of velocities in the turbine region, which led to an augmentation in the magnitude of all coefficients investigated (drag, lift, torque and power). For the case studied with the tip velocity ratio λ = 2, results indicated that power coefficient was augmented, indicating that the insertion of the turbine in a closed enclosure can benefit the energy conversion in an OWC device.


1983 ◽  
Vol 105 (4) ◽  
pp. 487-490 ◽  
Author(s):  
W. L. Green ◽  
J. J. Campo ◽  
J. E. Parker ◽  
J. A. Miller ◽  
J. B. Miles

Author(s):  
Irene Simonetti ◽  
Lorenzo Cappietti ◽  
Hisham El Safti ◽  
Hocine Oumeraci

The Oscillating Water Column (OWC) is one of the simplest and most studied concepts for wave energy conversion. The commercial scale diffusion of the OWC technology is, however, strongly dependent upon the device optimization. Research at a fundamental level is therefore still required. Analytical, numerical and experimental models are necessary tools for advancing in the knowledge of the system and thus promoting its passage at the commercial level. In this work, a simplified frequency domain rigid piston model has been applied to preliminary select expected ranges of air pressures and air velocities for the instrumental set up of laboratory experiments. The set up of a Computational Fluid Dynamic (CFD) model implemented in the open source OpenFOAM®1 environment is then presented. The multiphase model solves incompressible 3D Navier-Stokes equations, using Large Eddy Simulation (LES) for turbulence modelling, and adopts a Volume of Fluid method (VOF) to track the air-water interface. A preliminary validation of the model with physical tests data is conducted. The numerical approach seems to be promising for an accurate simulation of the OWC device energy conversion process. Hence, the validated model can be a useful research tool for different problems, particularly for systematic parameter studies to extend the range of conditions tested in the laboratory.


2015 ◽  
Vol 14 (1) ◽  
pp. 03
Author(s):  
L. A. Isoldi ◽  
J. Do A. M. Grimmler ◽  
M. Letzow ◽  
J. A. Souza ◽  
M. Das N. Gomes ◽  
...  

The oceans represent one of the major energy natural resources, which potentially can be used to supply the World energy demand. In the last decades some devices to convert the wave ocean energy into electrical energy have been studied. In this work the operating principle of an Oscillating Water Column (OWC) converter was analyzed with a transient 3D numerical methodology, using the Finite Volume Method (FVM) and the Volume of Fluid (VOF) model. The incident waves on the OWC hydro- pneumatic chamber cause an oscillation of the water column inside the chamber producing an alternate air flow through the chimney. The air drives a turbine that is coupled to an electric generator. The aim of this work was to investigate the shape influence of the hydro-pneumatic chamber geometry in the air flow. For this, six cases were studied in laboratory scale and the results showed that the variation of the OWC chamber shape can improve 12.4% the amount of mass air flow.


2018 ◽  
Vol 148 ◽  
pp. 1026-1033 ◽  
Author(s):  
Pasquale G.F. Filianoti ◽  
Luana Gurnari ◽  
Marco Torresi ◽  
Sergio M. Camporeale

Sign in / Sign up

Export Citation Format

Share Document