RCC characteristics of planar/spherical three degree of freedom parallel mechanisms with joint compliances

Author(s):  
Whee-Kuk Kim ◽  
Jun-Yong Lee ◽  
Byung-Ju Yi
2010 ◽  
Vol 2 (3) ◽  
Author(s):  
Novona Rakotomanga ◽  
Ilian A. Bonev

The Cartesian workspace of most three-degree-of-freedom parallel mechanisms is divided by Type 2 (also called parallel) singularity surfaces into several regions. Accessing more than one such region requires crossing a Type 2 singularity, which is risky and calls for sophisticated control strategies. Some mechanisms can still cross these Type 2 singularity surfaces through “holes” that represent Type 1 (also called serial) singularities only. However, what is even more desirable is if these Type 2 singularity surfaces were curves instead. Indeed, there exists at least one such parallel mechanism (the agile eye) and all of its singularities are self-motions. This paper presents another parallel mechanism, a planar one, whose singularities are self-motions. The singularities of this novel mechanism are studied in detail. While the Type 2 singularities in the Cartesian space still constitute a surface, they degenerate into lines in the active-joint space, which is the main result of this paper.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Cong Yue ◽  
Ying Zhang ◽  
Hai-Jun Su ◽  
Xianwen Kong

In this paper, we apply screw theory to type synthesis of compliant parallel mechanisms (PMs) with translational degree-of-freedom (DOF). Compliant PMs are formed by a moving platform supported by three or more limbs each of which is a serial chain of flexure joints and rigid bodies. They achieve movement through the deformation of flexure joints and have been widely used in precision machinery. As an important task in the conceptual design stage, the goal of type synthesis is to determine the chain of each limb as well as their relationship when they are assembled in parallel for a prescribed motion pattern. In our approach, we study a category of commonly used flexure primitives and flexure elements whose freedom and constraint spaces are characterized by twists and wrenches in screw theory. Following the well-studied synthesis procedure for rigid body PMs, we propose a synthesis procedure for compliant PMs via screw theory. As an example, we demonstrate the procedure for synthesizing compliant PMs with three translational DOF. Tables of limbs, types, and geometric conditions for the assemblies of these limbs are presented. The paper provides a catalog of 3DOF translational compliant PM designs. At last, we developed finite element simulation to validate one of the synthesized designs.


Author(s):  
Antoin Baker ◽  
Carl D. Crane

The mechanism studied in this paper is a three degree of freedom 6×6 tensegrity structure. A tensegrity structure is one that balances internal (pre-stressed) forces of tension and compression. These structures have the unique property of stabilizing themselves if subjected to certain types of disturbances. The structure analyzed in this paper consists of two rigid bodies (platforms) connected by a total of six members. Three of the members are noncompliant constant-length struts and the other three members consist of springs. For typical parallel mechanisms, if the bottom platform is connected to the ground and the top platform is connected to the base by six compliant leg connectors, the top platform will have six degrees of freedom relative to the bottom platform. However, because three of the six members connecting the two platforms are noncompliant constant-length struts, the top platform has only three degrees of freedom. The primary contribution of this paper is the analysis of the three degree of freedom tensegrity platform. Specifically, given the location of the connector points on the base and top platforms, the lengths of the three noncompliant constant-length struts, and the desired location of a point embedded in the top platform measured with respect to a coordinate system attached to the base, all possible orientations of the top platform are determined.


Author(s):  
Marc Gouttefarde ◽  
Cle´ment M. Gosselin

This paper presents a detailed analysis of the constant-orientation wrench-closure workspace of planar three-degree-of-freedom parallel mechanisms driven by four cables. The constant-orientation wrench-closure workspace is defined as the subset of the plane wherein, for a given orientation of the moving platform, any planar wrench applied on the moving platform can be balanced by the cable-driven mechanism. Based on mathematical observations, this workspace is proved to be the union of two disconnected sets that may or may not exist. Moreover, if the constant-orientation wrench-closure workspace (WCW) exists, its boundary is shown to be composed of portions of conic sections. Then, an algorithm that determines the constant-orientation wrench-closure workspace by means of a graphical representation of its boundary is introduced. Several examples are also included.


Sign in / Sign up

Export Citation Format

Share Document