Humanoid arm motion planning using stereo vision and rrt search

Author(s):  
S. Kagami ◽  
J.J. Kuffner ◽  
K. Nishiwaki ◽  
X. Okada ◽  
M. Inaba ◽  
...  
2003 ◽  
Vol 15 (2) ◽  
pp. 200-207 ◽  
Author(s):  
Satoshi Kagami ◽  
◽  
James J. Kuffner ◽  
Koichi Nishiwaki ◽  
Kei Okada ◽  
...  

This paper describes an experimental stereo vision based motion planning system for humanoid robots. The goal is to automatically generate arm trajectories that avoid obstacles in unknown environments from high-level task commands. Our system consists of three components: 1) environment sensing using stereo vision with disparity map generation and online consistency checking, 2) probabilistic mesh modeling in order to accumulate continuous vision input, and 3) motion planning for the robot arm using RRTs (Rapidly exploring Random Trees). We demonstrate results from experiments using an implementation designed for the humanoid robot H7.


Author(s):  
S. Kagami ◽  
K. Nishiwaki ◽  
J. J. Kuffner ◽  
K. Okada ◽  
Y. Kuniyoshi ◽  
...  

2017 ◽  
Vol 7 (12) ◽  
pp. 1210 ◽  
Author(s):  
Jun Kurosu ◽  
Ayanori Yorozu ◽  
Masaki Takahashi

Author(s):  
Shiqiu Gong ◽  
Jing Zhao ◽  
Ziqiang Zhang ◽  
Biyun Xie

Purpose This paper aims to introduce the human arm movement primitive (HAMP) to express and plan the motions of anthropomorphic arms. The task planning method is established for the minimum task cost and a novel human-like motion planning method based on the HAMPs is proposed to help humans better understand and plan the motions of anthropomorphic arms. Design/methodology/approach The HAMPs are extracted based on the structure and motion expression of the human arm. A method to slice the complex tasks into simple subtasks and sort subtasks is proposed. Then, a novel human-like motion planning method is built through the selection, sequencing and quantification of HAMPs. Finally, the HAMPs are mapped to the traditional joint angles of a robot by an analytical inverse kinematics method to control the anthropomorphic arms. Findings For the exploration of the motion laws of the human arm, the human arm motion capture experiments on 12 subjects are performed. The results show that the motion laws of human arm are reflected in the selection, sequencing and quantification of HAMPs. These motion laws can facilitate the human-like motion planning of anthropomorphic arms. Originality/value This study presents the HAMPs and a method for selecting, sequencing and quantifying them in human-like style, which leads to a new motion planning method for the anthropomorphic arms. A similar methodology is suitable for robots with anthropomorphic arms such as service robots, upper extremity exoskeleton robots and humanoid robots.


2004 ◽  
Author(s):  
Dengming Zhu ◽  
Zhaoqi Wang ◽  
He Huang ◽  
Min Shi

Sign in / Sign up

Export Citation Format

Share Document