scholarly journals Implementation issues in identifying the failure-tolerant workspace boundaries of a kinematically redundant manipulator

Author(s):  
Randy C. Hoover ◽  
Rodney G. Roberts ◽  
Anthony A. Maciejewski
Robotica ◽  
2015 ◽  
Vol 34 (12) ◽  
pp. 2669-2688 ◽  
Author(s):  
Wenfu Xu ◽  
Lei Yan ◽  
Zonggao Mu ◽  
Zhiying Wang

SUMMARYAn S-R-S (Spherical-Revolute-Spherical) redundant manipulator is similar to a human arm and is often used to perform dexterous tasks. To solve the inverse kinematics analytically, the arm-angle was usually used to parameterise the self-motion. However, the previous studies have had shortcomings; some methods cannot avoid algorithm singularity and some are unsuitable for configuration control because they use a temporary reference plane. In this paper, we propose a method of analytical inverse kinematics resolution based on dual arm-angle parameterisation. By making use of two orthogonal vectors to define two absolute reference planes, we obtain two arm angles that satisfy a specific condition. The algorithm singularity problem is avoided because there is always at least one arm angle to represent the redundancy. The dual arm angle method overcomes the shortcomings of traditional methods and retains the advantages of the arm angle. Another contribution of this paper is the derivation of the absolute reference attitude matrix, which is the key to the resolution of analytical inverse kinematics but has not been previously addressed. The simulation results for typical cases that include the algorithm singularity condition verified our method.


Sign in / Sign up

Export Citation Format

Share Document