scholarly journals MSDPN: Monocular Depth Prediction with Partial Laser Observation using Multi-stage Neural Networks

Author(s):  
Hyungtae Lim ◽  
Hyeonjae Gil ◽  
Hyun Myung
2021 ◽  
Author(s):  
Christon R. Nadar ◽  
Christian Kunert ◽  
Tobias Schwandt ◽  
Wolfgang Broll

Author(s):  
Zhaokai Wang ◽  
Limin Xiao ◽  
Rongbin Xu ◽  
Shubin Su ◽  
Shupan Li ◽  
...  

2020 ◽  
Vol 34 (07) ◽  
pp. 12257-12264 ◽  
Author(s):  
Xinlong Wang ◽  
Wei Yin ◽  
Tao Kong ◽  
Yuning Jiang ◽  
Lei Li ◽  
...  

Monocular depth estimation enables 3D perception from a single 2D image, thus attracting much research attention for years. Almost all methods treat foreground and background regions (“things and stuff”) in an image equally. However, not all pixels are equal. Depth of foreground objects plays a crucial role in 3D object recognition and localization. To date how to boost the depth prediction accuracy of foreground objects is rarely discussed. In this paper, we first analyze the data distributions and interaction of foreground and background, then propose the foreground-background separated monocular depth estimation (ForeSeE) method, to estimate the foreground and background depth using separate optimization objectives and decoders. Our method significantly improves the depth estimation performance on foreground objects. Applying ForeSeE to 3D object detection, we achieve 7.5 AP gains and set new state-of-the-art results among other monocular methods. Code will be available at: https://github.com/WXinlong/ForeSeE.


Author(s):  
Xiaotian Chen ◽  
Xuejin Chen ◽  
Zheng-Jun Zha

Monocular depth estimation is an essential task for scene understanding. The underlying structure of objects and stuff in a complex scene is critical to recovering accurate and visually-pleasing depth maps. Global structure conveys scene layouts, while local structure reflects shape details. Recently developed approaches based on convolutional neural networks (CNNs) significantly improve the performance of depth estimation. However, few of them take into account multi-scale structures in complex scenes. In this paper, we propose a Structure-Aware Residual Pyramid Network (SARPN) to exploit multi-scale structures for accurate depth prediction. We propose a Residual Pyramid Decoder (RPD) which expresses global scene structure in upper levels to represent layouts, and local structure in lower levels to present shape details. At each level, we propose Residual Refinement Modules (RRM) that predict residual maps to progressively add finer structures on the coarser structure predicted at the upper level. In order to fully exploit multi-scale image features, an Adaptive Dense Feature Fusion (ADFF) module, which adaptively fuses effective features from all scales for inferring structures of each scale, is introduced. Experiment results on the challenging NYU-Depth v2 dataset demonstrate that our proposed approach achieves state-of-the-art performance in both qualitative and quantitative evaluation. The code is available at https://github.com/Xt-Chen/SARPN.


2021 ◽  
Vol 54 (8) ◽  
pp. 449-455
Author(s):  
Xiaofei Wu ◽  
Junghui Chen ◽  
Lei Xie ◽  
Yishan Lee ◽  
Chun-I Chen

2021 ◽  
Author(s):  
Qihang Wang ◽  
Feng Liu ◽  
Guihong Wan ◽  
Ying Chen

AbstractMonitoring the depth of unconsciousness during anesthesia is useful in both clinical settings and neuroscience investigations to understand brain mechanisms. Electroencephalogram (EEG) has been used as an objective means of characterizing brain altered arousal and/or cognition states induced by anesthetics in real-time. Different general anesthetics affect cerebral electrical activities in different ways. However, the performance of conventional machine learning models on EEG data is unsatisfactory due to the low Signal to Noise Ratio (SNR) in the EEG signals, especially in the office-based anesthesia EEG setting. Deep learning models have been used widely in the field of Brain Computer Interface (BCI) to perform classification and pattern recognition tasks due to their capability of good generalization and handling noises. Compared to other BCI applications, where deep learning has demonstrated encouraging results, the deep learning approach for classifying different brain consciousness states under anesthesia has been much less investigated. In this paper, we propose a new framework based on meta-learning using deep neural networks, named Anes-MetaNet, to classify brain states under anesthetics. The Anes-MetaNet is composed of Convolutional Neural Networks (CNN) to extract power spectrum features, and a time consequence model based on Long Short-Term Memory (LSTM) Networks to capture the temporal dependencies, and a meta-learning framework to handle large cross-subject variability. We used a multi-stage training paradigm to improve the performance, which is justified by visualizing the high-level feature mapping. Experiments on the office-based anesthesia EEG dataset demonstrate the effectiveness of our proposed Anes-MetaNet by comparison of existing methods.


Sign in / Sign up

Export Citation Format

Share Document