scholarly journals Inference of Brain States under Anesthesia with Meta Learning Based Deep Learning Models

2021 ◽  
Author(s):  
Qihang Wang ◽  
Feng Liu ◽  
Guihong Wan ◽  
Ying Chen

AbstractMonitoring the depth of unconsciousness during anesthesia is useful in both clinical settings and neuroscience investigations to understand brain mechanisms. Electroencephalogram (EEG) has been used as an objective means of characterizing brain altered arousal and/or cognition states induced by anesthetics in real-time. Different general anesthetics affect cerebral electrical activities in different ways. However, the performance of conventional machine learning models on EEG data is unsatisfactory due to the low Signal to Noise Ratio (SNR) in the EEG signals, especially in the office-based anesthesia EEG setting. Deep learning models have been used widely in the field of Brain Computer Interface (BCI) to perform classification and pattern recognition tasks due to their capability of good generalization and handling noises. Compared to other BCI applications, where deep learning has demonstrated encouraging results, the deep learning approach for classifying different brain consciousness states under anesthesia has been much less investigated. In this paper, we propose a new framework based on meta-learning using deep neural networks, named Anes-MetaNet, to classify brain states under anesthetics. The Anes-MetaNet is composed of Convolutional Neural Networks (CNN) to extract power spectrum features, and a time consequence model based on Long Short-Term Memory (LSTM) Networks to capture the temporal dependencies, and a meta-learning framework to handle large cross-subject variability. We used a multi-stage training paradigm to improve the performance, which is justified by visualizing the high-level feature mapping. Experiments on the office-based anesthesia EEG dataset demonstrate the effectiveness of our proposed Anes-MetaNet by comparison of existing methods.

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2270 ◽  
Author(s):  
Kai Yang ◽  
Zhitao Huang ◽  
Xiang Wang ◽  
Xueqiong Li

Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.


Author(s):  
Vasily D. Derbentsev ◽  
Vitalii S. Bezkorovainyi ◽  
Iryna V. Luniak

This study investigates the issues of forecasting changes in short-term currency trends using deep learning models, which is relevant for both the scientific community and for traders and investors. The purpose of this study is to build a model for forecasting the direction of change in the prices of currency quotes based on deep neural networks. The developed architecture was based on the model of valve recurrent node, which is a modification of the model of “Long Short-Term Memory”, but is simpler in terms of the number of parameters and learning time. The forecast calculations of the dynamics of quotations of the currency pair euro/dollar and the most capitalised cryptocurrency Bitcoin/dollar were performed using daily, four-hour and hourly datasets. The obtained results of binary classification (forecast of the direction of trend change) when applying daily and hourly quotations turned out to be generally better than those of time series models or models of neural networks of other architecture (in particular, multilayer perceptron or “Long Short-Term Memory” models). According to the study results, the highest accuracy of classification was for the model of daily quotations for both euro/dollar – about 72%, and for Bitcoin/ dollar – about 69%. For four-hour and hourly time series, the accuracy of classification decreased, which can be explained both by the increase in the impact of “market noise” and the probable overfitting. Computer simulation has demonstrated that models predict a rising trend better than a declining one. The study confirmed the prospects for the application of deep learning models for short-term forecasting of time series of currency quotes. The use of the developed models proved to be effective for both fiat and cryptocurrencies. The proposed system of models based on deep neural networks can be used as a basis for developing an automated trading system in the foreign exchange market


Author(s):  
Satyabrata Aich ◽  
Sabyasachi Chakraborty ◽  
Hee-Cheol Kim

<table width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr><td valign="top" width="387"><p>There is an increasing amount of text data available on the web with multiple topical granularities; this necessitates proper categorization/classification of text to facilitate obtaining useful information as per the needs of users. Some traditional approaches such as bag-of-words and bag-of-ngrams models provide good results for text classification. However, texts available on the web in the current state contain high event-related granularity on different topics at different levels, which may adversely affect the accuracy of traditional approaches. With the invention of deep learning models, which already have the capability of providing good accuracy in the field of image processing and speech recognition, the problems inherent in the traditional text classification model can be overcome. Currently, there are several deep learning models such as a convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory that are widely used for various text-related tasks; however, among them, the CNN model is popular because it is simple to use and has high accuracy for text classification. In this study, classification of random texts on the web into categories is attempted using a CNN-based model by changing the hyperparameters and sequence of text vectors. We attempt to tune every hyperparameter that is unique for the classification task along with the sequences of word vectors to obtain the desired accuracy; the accuracy is found to be in the range of 85–92%. This model can be considered as a reliable model and applied to solve real-world problem or extract useful information for various text mining applications.</p></td></tr></tbody></table>


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Wisam Elmasry ◽  
Akhan Akbulut ◽  
Abdul Halim Zaim

In computer security, masquerade detection is a special type of intrusion detection problem. Effective and early intrusion detection is a crucial factor for computer security. Although considerable work has been focused on masquerade detection for more than a decade, achieving a high level of accuracy and a comparatively low false alarm rate is still a big challenge. In this paper, we present a comprehensive empirical study in the area of anomaly-based masquerade detection using three deep learning models, namely, Deep Neural Networks (DNN), Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN), and Convolutional Neural Networks (CNN). In order to surpass previous studies on this subject, we used three UNIX command line-based datasets, with six variant data configurations implemented from them. Furthermore, static and dynamic masquerade detection approaches were utilized in this study. In a static approach, DNN and LSTM-RNN models are used along with a Particle Swarm Optimization-based algorithm for their hyperparameters selection. On the other hand, a CNN model is employed in a dynamic approach. Moreover, twelve well-known evaluation metrics are used to assess model performance in each of the data configurations. Finally, intensive quantitative and ROC curves analyses of results are provided at the end of this paper. The results not only show that deep learning models outperform all traditional machine learning methods in the literature but also prove their ability to enhance masquerade detection on the used datasets significantly.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2021 ◽  
Vol 11 (5) ◽  
pp. 2284
Author(s):  
Asma Maqsood ◽  
Muhammad Shahid Farid ◽  
Muhammad Hassan Khan ◽  
Marcin Grzegorzek

Malaria is a disease activated by a type of microscopic parasite transmitted from infected female mosquito bites to humans. Malaria is a fatal disease that is endemic in many regions of the world. Quick diagnosis of this disease will be very valuable for patients, as traditional methods require tedious work for its detection. Recently, some automated methods have been proposed that exploit hand-crafted feature extraction techniques however, their accuracies are not reliable. Deep learning approaches modernize the world with their superior performance. Convolutional Neural Networks (CNN) are vastly scalable for image classification tasks that extract features through hidden layers of the model without any handcrafting. The detection of malaria-infected red blood cells from segmented microscopic blood images using convolutional neural networks can assist in quick diagnosis, and this will be useful for regions with fewer healthcare experts. The contributions of this paper are two-fold. First, we evaluate the performance of different existing deep learning models for efficient malaria detection. Second, we propose a customized CNN model that outperforms all observed deep learning models. It exploits the bilateral filtering and image augmentation techniques for highlighting features of red blood cells before training the model. Due to image augmentation techniques, the customized CNN model is generalized and avoids over-fitting. All experimental evaluations are performed on the benchmark NIH Malaria Dataset, and the results reveal that the proposed algorithm is 96.82% accurate in detecting malaria from the microscopic blood smears.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Juhong Namgung ◽  
Siwoon Son ◽  
Yang-Sae Moon

In recent years, cyberattacks using command and control (C&C) servers have significantly increased. To hide their C&C servers, attackers often use a domain generation algorithm (DGA), which automatically generates domain names for the C&C servers. Accordingly, extensive research on DGA domain detection has been conducted. However, existing methods cannot accurately detect continuously generated DGA domains and can easily be evaded by an attacker. Recently, long short-term memory- (LSTM-) based deep learning models have been introduced to detect DGA domains in real time using only domain names without feature extraction or additional information. In this paper, we propose an efficient DGA domain detection method based on bidirectional LSTM (BiLSTM), which learns bidirectional information as opposed to unidirectional information learned by LSTM. We further maximize the detection performance with a convolutional neural network (CNN) + BiLSTM ensemble model using Attention mechanism, which allows the model to learn both local and global information in a domain sequence. Experimental results show that existing CNN and LSTM models achieved F1-scores of 0.9384 and 0.9597, respectively, while the proposed BiLSTM and ensemble models achieved higher F1-scores of 0.9618 and 0.9666, respectively. In addition, the ensemble model achieved the best performance for most DGA domain classes, enabling more accurate DGA domain detection than existing models.


Sign in / Sign up

Export Citation Format

Share Document