scholarly journals F-Siamese Tracker: A Frustum-based Double Siamese Network for 3D Single Object Tracking

Author(s):  
Hao Zou ◽  
Jinhao Cui ◽  
Xin Kong ◽  
Chujuan Zhang ◽  
Yong Liu ◽  
...  
2021 ◽  
Vol 13 (7) ◽  
pp. 1298
Author(s):  
Kun Zhu ◽  
Xiaodong Zhang ◽  
Guanzhou Chen ◽  
Xiaoliang Tan ◽  
Puyun Liao ◽  
...  

Satellite video single object tracking has attracted wide attention. The development of remote sensing platforms for earth observation technologies makes it increasingly convenient to acquire high-resolution satellite videos, which greatly accelerates ground target tracking. However, overlarge images with small object size, high similarity among multiple moving targets, and poor distinguishability between the objects and the background make this task most challenging. To solve these problems, a deep Siamese network (DSN) incorporating an interframe difference centroid inertia motion (ID-CIM) model is proposed in this paper. In object tracking tasks, the DSN inherently includes a template branch and a search branch; it extracts the features from these two branches and employs a Siamese region proposal network to obtain the position of the target in the search branch. The ID-CIM mechanism was proposed to alleviate model drift. These two modules build the ID-DSN framework and mutually reinforce the final tracking results. In addition, we also adopted existing object detection datasets for remotely sensed images to generate training datasets suitable for satellite video single object tracking. Ablation experiments were performed on six high-resolution satellite videos acquired from the International Space Station and “Jilin-1” satellites. We compared the proposed ID-DSN results with other 11 state-of-the-art trackers, including different networks and backbones. The comparison results show that our ID-DSN obtained a precision criterion of 0.927 and a success criterion of 0.694 with a frames per second (FPS) value of 32.117 implemented on a single NVIDIA GTX1070Ti GPU.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1067
Author(s):  
Tongtong Yuan ◽  
Wenzhu Yang ◽  
Qian Li ◽  
Yuxia Wang

Siamese trackers are widely used in various fields for their advantages of balancing speed and accuracy. Compared with the anchor-based method, the anchor-free-based approach can reach faster speeds without any drop in precision. Inspired by the Siamese network and anchor-free idea, an anchor-free Siamese network (AFSN) with multi-template updates for object tracking is proposed. To improve tracking performance, a dual-fusion method is adopted in which the multi-layer features and multiple prediction results are combined respectively. The low-level feature maps are concatenated with the high-level feature maps to make full use of both spatial and semantic information. To make the results as stable as possible, the final results are obtained by combining multiple prediction results. Aiming at the template update, a high-confidence multi-template update mechanism is used. The average peak to correlation energy is used to determine whether the template should be updated. We use the anchor-free network to implement object tracking in a per-pixel manner, which computes the object category and bounding boxes directly. Experimental results indicate that the average overlap and success rate of the proposed algorithm increase by about 5% and 10%, respectively, compared to the SiamRPN++ algorithm when running on the dataset of GOT-10k (Generic Object Tracking Benchmark).


2021 ◽  
Vol 15 (5) ◽  
Author(s):  
Qianli Zhou ◽  
Rong Wang ◽  
Jinze Li ◽  
Naiqian Tian ◽  
Wenjin Zhang

2021 ◽  
Author(s):  
Changze Li ◽  
Xiaoxiong Liu ◽  
Xingwang Zhang ◽  
Bin Qin

2011 ◽  
pp. 103-132
Author(s):  
Subhash Challa ◽  
Mark R. Morelande ◽  
Darko Musicki ◽  
Robin J. Evans

Sign in / Sign up

Export Citation Format

Share Document