scholarly journals CLAMGen: Closed-Loop Arm Motion Generation via Multi-view Vision-Based RL

Author(s):  
Iretiayo Akinola ◽  
Zizhao Wang ◽  
Peter Allen
Author(s):  
Javier Rolda´n Mckinley ◽  
Carl Crane ◽  
David B. Dooner

This paper introduces a reconfigurable closed-loop spatial mechanism that can be applied to repetitive motion tasks. The concept is to incorporate five pairs of non-circular gears into a six degree-of–freedom closed-loop spatial chain. The gear pairs are designed based on given mechanism parameters and a user defined motion specification of a coupler link of the mechanism. It is shown in the paper that planar gear pairs can be used if the spatial closed-loop chain is comprised of six pairs of parallel joint axes, i.e. the first joint axis is parallel to the second, the third is parallel to the fourth, ..., and the eleventh is parallel to the twelfth. This paper presents the synthesis of the gear pairs that satisfy a specified three-dimensional position and orientation need. Numerical approximations were used in the synthesis the non-circular gear pairs by introducing an auxiliary monotonic parameter associated to each end-effector position to parameterize the motion needs. The findings are supported by a computer animation. No previous known literature incorporates planar non-circular gears to fulfill spatial motion generation needs.


Author(s):  
Sho TAJIMA ◽  
Tokuo TSUJI ◽  
Yosuke SUZUKI ◽  
Tetsuyou WATANABE ◽  
Kenichi MOROOKA ◽  
...  

Author(s):  
Gianpaolo Gulletta ◽  
Wolfram Erlhagen ◽  
Estela Bicho

In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analysed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioural and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.


Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 102
Author(s):  
Gianpaolo Gulletta ◽  
Wolfram Erlhagen ◽  
Estela Bicho

In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.


Author(s):  
Michael J. Fairchild ◽  
Peter M. Hassing ◽  
Scott David Kelly ◽  
Parthesh Pujari ◽  
Phanindra Tallapragada

We present a strategy for coupled steering and motion generation applicable to a class of single-input planar robotic vehicles. We demonstrate this strategy through simulations of two different vehicles under closed-loop control, the first a novel variation of the Chaplygin sleigh and the second a fishlike swimmer in an ideal fluid. The dynamics of the former are influenced by a nonholonomic constraint and the dynamics of the latter by a hydrodynamic force associated with vortex shedding. The juxta-position of these two systems highlights a link between nonholonomic mechanics and hydrodynamics explored in a prior paper.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 404
Author(s):  
Z. Mohamed ◽  
N. S. Khusaini ◽  
M. A.M Anuar ◽  
R. Ramly ◽  
M. A Anuar ◽  
...  

The performance of robot arm motion generated via neural network are presented in this paper. The robot arm motion for obstacle avoidance simultaneously optimizing three functions; minimum distance, minimum time and minimum energy are generated. Four different initial and goal position had been chosen to test and analyze the performance of generated neural controller. The same neural controllers can be employed to a different range of initial and goal position. The motion generated yield good results in the simulator. In this research a new approach for intelligent robot arm path and motion generation are successfully implemented. 


Sign in / Sign up

Export Citation Format

Share Document