nonholonomic constraint
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 11 (22) ◽  
pp. 10895
Author(s):  
Yao Huang

This paper presents a switched visual servoing strategy for maneuvering the nonholonomic mobile robot to the desired configuration while keeping the tracked image points in the vision of the camera. Firstly, a pure backward motion and a pure rotational motion are applied to the mobile robot in succession. Thus, the principle point and the scaled focal length in x direction of the camera are identified through the visual feedback from a fixed onboard camera. Secondly, the identified parameters are used to build the system model in polar-coordinate representation. Then an adaptive non-smooth controller is designed to maneuver the mobile robot to the desired configuration under the nonholonomic constraint. And a switched strategy which consists of two image-based controllers is utilized for keeping the features in the field-of-view. Simulation results are presented to validate the effectiveness of the proposed approach.


2021 ◽  
Vol 17 (1) ◽  
pp. 39-48
Author(s):  
E. A. Mikishanina ◽  

This article is devoted to the study of the dynamics of movement of an articulated $n$-trailer wheeled vehicle with a controlled leading car. Each link of the vehicle can rotate relative to its point of fixation. It is shown that, in the case of a controlled leading car, only nonholonomic constraint equations are sufficient to describe the dynamics of the system, which in turn form a closed system of differential equations. For a detailed analysis of the dynamics of the system, the cases of movement of a wheeled vehicle consisting of three symmetric links are considered, and the leading link (leading car) moves both uniformly along a circle and with a modulo variable velocity along a certain curved trajectory. The angular velocity remains constant in both cases. In the first case, the system is integrable and analytical solutions are obtained. In the second case, when the linear velocity is a periodic function, the solutions of the problem are also periodic. In numerical experiments with a large number of trailers, similar dynamics are observed.


2021 ◽  
Vol 7 (4) ◽  
pp. 5117-5132
Author(s):  
Junhong Li ◽  
◽  
Ning Cui

<abstract><p>In this paper, we firstly formulate a new hyperchaotic Hamiltonian system and demonstrate the existence of multi-equilibrium points in the system. The characteristics of equilibrium points, Lyapunov exponents and Poincaré sections are studied. Secondly, we investigate the complex dynamical behaviors of the system under holonomic constraint and nonholonomic constraint, respectively. The results show that the hyperchaotic system can generated by introducing constraint. Additionally, the hyperchaos control of the system is achieved by applying linear feedback control. The numerical simulations are carried out in order to analyze the complex phenomena of the systems.</p></abstract>


2020 ◽  
Vol 49 (3) ◽  
pp. 320-334
Author(s):  
Ming Yue ◽  
Yigao Ning

This paper presents a control method for a WIP vehicle in multi-obstacle environment based on improved artificial potential field. Firstly, an improved artificial potential field (IAPF) is developed, where a safe distance is introduced to the existing repulsive potential field to solve the security issue, while the local minima can also be eliminated in the meantime. Next, an obstacle avoidance controller is designed based on the IAPF, where the nonholonomic constraint and underactuated characteristic of the WIP vehicle are fully considered, and the stability condition of the system is analyzed by means of the related control theory. Moreover, to further improve the control performance, a key parameter that play an important role in the controller is adjusted by taking advantage of fuzzy logic, and detailed analyses are given to demonstrate its necessity and effectiveness. Finally, considering a motion environment that contains dense obstacles, narrow corridor and an obstacle near the target, numerical simulations are conducted to validate the proposed method, whose results indicate that the method has a good performance to control the WIP vehicle in multi-obstacle environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Qingxuan Jia ◽  
Bonan Yuan ◽  
Gang Chen ◽  
Yingzhuo Fu

For the free-floating space manipulator with free-swinging joint failure, motions among its active joints, passive joints, free-floating base, and end-effector are coupled. It is significant to make clear all motion coupling relationships, which are defined as “kinematic coupling relationships” and “dynamic coupling relationships,” inside the system. With the help of conservation of system momentum, the kinematic model is established, and velocity mapping relation between active joints and passive joints, velocity mapping relation between active joints and base, velocity mapping relation between active joints and end-effector. We establish the dynamic model based on the Lagrange equation, and the system inertia matrix is partitioned according to the distribution of active joints, passive joints, and the base. Then, kinematic and dynamic coupling relationships are explicitly derived, and coupling indexes are defined to depict coupling degree. Motions of a space manipulator with free-swinging joint failure simultaneously satisfy the first-order nonholonomic constraint (kinematic coupling relationships) and the second-order nonholonomic constraint (dynamic coupling relationships), and the manipulator can perform tasks through motion planning and control. Finally, simulation experiments are carried out to verify the existence and correctness of the first-order and second-order nonholonomic constraints and display task execution effects of the space manipulator. This research analyzes the kinematic and dynamic characteristics of the free-floating space manipulator with free-swinging joint failure for the first time. It is the theoretical basis of free-swinging joint failure treatment for a space manipulator.


2019 ◽  
Author(s):  
Thales Henriques da Silva ◽  
Victor Hugo Pereira Rodrigues ◽  
Fernando Lizarralde

Sign in / Sign up

Export Citation Format

Share Document