A Robot Arm Motion Generation Based on Learning of Objects Shape and Human Motion

Author(s):  
Sho TAJIMA ◽  
Tokuo TSUJI ◽  
Yosuke SUZUKI ◽  
Tetsuyou WATANABE ◽  
Kenichi MOROOKA ◽  
...  
2018 ◽  
Vol 7 (4.36) ◽  
pp. 404
Author(s):  
Z. Mohamed ◽  
N. S. Khusaini ◽  
M. A.M Anuar ◽  
R. Ramly ◽  
M. A Anuar ◽  
...  

The performance of robot arm motion generated via neural network are presented in this paper. The robot arm motion for obstacle avoidance simultaneously optimizing three functions; minimum distance, minimum time and minimum energy are generated. Four different initial and goal position had been chosen to test and analyze the performance of generated neural controller. The same neural controllers can be employed to a different range of initial and goal position. The motion generated yield good results in the simulator. In this research a new approach for intelligent robot arm path and motion generation are successfully implemented. 


Author(s):  
Zulkifli Mohamed ◽  
Mitsuki Kitani ◽  
Genci Capi

Purpose – The purpose of this paper is to compare the performance of the robot arm motion generated by neural controllers in simulated and real robot experiments. Design/methodology/approach – The arm motion generation is formulated as an optimization problem. The neural controllers generate the robot arm motion in dynamic environments optimizing three different objective functions; minimum execution time, minimum distance and minimum acceleration. In addition, the robot motion generation in the presence of obstacles is also considered. Findings – The robot is able to adapt its arm motion generation based on the specific task, reaching the goal position in simulated and experimental tests. The same neural controller can be employed to generate the robot motion for a wide range of initial and goal positions. Research limitations/implications – The motion generated yield good results in both simulation and experimental environments. Practical implications – The robot motion is generated based on three different objective functions that are simultaneously optimized. Therefore, the humanoid robot can perform a wide range of tasks in real-life environments, by selecting the appropriate motion. Originality/value – A new method for adaptive arm motion generation of a mobile humanoid robot operating in dynamic human and industrial environments.


2018 ◽  
Vol 15 (06) ◽  
pp. 1850026 ◽  
Author(s):  
Meng Li ◽  
Weizhong Guo ◽  
Rongfu Lin ◽  
Changzheng Wu ◽  
Liangliang Han

The aim of this paper is trying to propose an efficient method of inverse kinematics and motion generation for redundant humanoid robot arm based on the intrinsic principles of human arm motion. The intrinsic principle analysis takes into account both the skeletal kinematics and muscle strength properties. Firstly, this work analyzed the kinematic redundancy problem of a human arm. By analyzing the biological feature of a human arm, the kinematic redundancy boils down to the uncertainty of elbow position. Secondly, because the muscle’s kinematic and strength properties are critical for simulating biometric motion authentically, the muscle strength property was introduced as the criterion for configuration identification and motion generation. Three types of limb configuration, dog walking, gecko climbing, and human walking limb configuration were analyzed, and two geometrical configuration identification rules were deduced to generate biomimetic motion for humanoid robotic arms. By comparing the proposed method with other five IK methods, the proposed method significantly deduced the computing time. Finally, the configuration identification rules were used to generate motions for a 7-DoF humanoid robotic arm. The results showed that the biological rules can generate biomimetic, smooth arm motions for a redundant humanoid robotic arm.


2015 ◽  
Vol 3 (2) ◽  
pp. 115-121
Author(s):  
Genci Capi ◽  
Zulkifli Mohamed ◽  
Mitsuki Kitani ◽  
Shin-ichiro Kaneko

2014 ◽  
Vol 79 ◽  
pp. 411-416 ◽  
Author(s):  
Hsien-I Lin ◽  
Yu-Cheng Liu ◽  
Yu-Hsiang Lin

2005 ◽  
Vol 02 (01) ◽  
pp. 105-124 ◽  
Author(s):  
VELJKO POTKONJAK

Handwriting has always been considered an important human task, and accordingly it has attracted the attention of researchers working in biomechanics, physiology, and related fields. There exist a number of studies on this area. This paper considers the human–machine analogy and relates robots with handwriting. The work is two-fold: it improves the knowledge in biomechanics of handwriting, and introduces some new concepts in robot control. The idea is to find the biomechanical principles humans apply when resolving kinematic redundancy, express the principles by means of appropriate mathematical models, and then implement them in robots. This is a step forward in the generation of human-like motion of robots. Two approaches to redundancy resolution are described: (i) "Distributed Positioning" (DP) which is based on a model to represent arm motion in the absence of fatigue, and (ii) the "Robot Fatigue" approach, where robot movements similar to the movements of a human arm under muscle fatigue are generated. Both approaches are applied to a redundant anthropomorphic robot arm performing handwriting. The simulation study includes the issues of legibility and inclination of handwriting. The results demonstrate the suitability and effectiveness of both approaches.


Volume 2 ◽  
2004 ◽  
Author(s):  
Reza Ravani ◽  
Ali Meghdari

The aim of this paper is to demonstrate that the techniques of Computer Aided Geometric Design such as spatial rational curves and surfaces could be applied to Kinematics, Computer Animation and Robotics. For this purpose we represent a method which utilizes a special class of rational curves called Rational Frenet-Serret (RF) [8] curves for robot trajectory planning. RF curves distinguished by the property that the motion of their Frenet-Serret frame is rational. We describe an algorithm for interpolation of positions by a rational Frenet-Serret motion. Further more we provide an analysis on spatial frames (Frenet-Serret frame and Rotation Minimizing frame) for smooth robot arm motion and investigate their applications in sweep surface modeling.


2021 ◽  
Author(s):  
Mario Laux ◽  
Andreas Zell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document