Observer-based finite-time consensus for double integrator systems with time varying disturbances by sliding mode control

Author(s):  
Qian Cao ◽  
YongDuan Song
2010 ◽  
Vol 92 (7-8) ◽  
pp. 257-268 ◽  
Author(s):  
Yu-Sheng Lu ◽  
Chien-Wei Chiu ◽  
Jian-Shiang Chen

2021 ◽  
Vol 40 (1) ◽  
pp. 983-999
Author(s):  
Huan Li ◽  
Pengyi Tang ◽  
Yuechao Ma

In this paper, a class of observer-based sliding mode controller is designed, and the finite-time H∞ control problem of uncertain T-S fuzzy systems with time-varying is studied. Firstly, an integral-type sliding surface function with time-delay is devised based on the state estimator, and sufficient criteria of finite-time bounded and finite-time H∞ bounded can be obtained for the T-S systems. Moreover, the proposed sliding mode control law is integrated to ensure the dynamics of controlled system into the sliding surface in a finite-time interval. Then, according to the linear matrix inequalities (LMIs), the desired gain matrices of fuzzy sliding mode controller and state estimator are derived. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Xuzhong Wu ◽  
Shengjing Tang ◽  
Jie Guo ◽  
Yao Zhang

This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.


2020 ◽  
Vol 67 (10) ◽  
pp. 2084-2088
Author(s):  
Lei Wang ◽  
Zhuoyue Song ◽  
Xiangdong Liu ◽  
Zhen Li ◽  
Tyrone Fernando ◽  
...  

2021 ◽  
Vol 111 ◽  
pp. 106549
Author(s):  
Jianhua Wang ◽  
Liang Han ◽  
Xiwang Dong ◽  
Qingdong Li ◽  
Zhang Ren

Sign in / Sign up

Export Citation Format

Share Document