An IEEE 802.15.4 RF transmitter for 2.4 GHz ISM band healthcare applications

Author(s):  
Liang-Hung Wang ◽  
Tsung-Yen Chen ◽  
Huan Chen ◽  
You-Yin Chen ◽  
Qiang Fang ◽  
...  
2015 ◽  
Vol 6 (3) ◽  
pp. 1463-1472 ◽  
Author(s):  
Narjes Torabi ◽  
Karim Rostamzadeh ◽  
Victor C. M. Leung
Keyword(s):  

Author(s):  
José A. Afonso ◽  
Pedro Macedo ◽  
Luis A. Rocha ◽  
José H. Correia

Conventional wired body sensor networks have been used in hospitals over the last decade; however, the tethered operation restricts the mobility of the patients. In the scenario considered in this chapter, the signals collected from the patients’ bodies are wirelessly transmitted to a base station, and then delivered to a remote diagnosis centre through a communication infrastructure, enabling full mobility of the patient in the coverage area of the wireless network. Healthcare applications require the network to satisfy demanding requirements in terms of quality of service (QoS) and, at the same time, minimize the energy consumption of the sensor nodes. The traffic generated by data-intensive healthcare applications may lead to frequent collisions between sensor nodes and the consequent loss of data, if conventional MAC protocols for wireless sensor networks are used. Therefore, this chapter presents LPRT and CCMAC, two MAC protocols that intend to satisfy the QoS requirements of these applications, but differ in the wireless topology used. Experimental results for an implementation of the LPRT using an IEEE 802.15.4 compliant wireless sensor platform are presented, as well as simulation results comparing the performance of direct communication (between wireless body sensor nodes and the base station) with two other approaches relying on a cluster-based topology (similar to the one proposed by the authors of LEACH), which demonstrate the benefits of using a cluster-based topology on wireless healthcare applications.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Jelena Mišić ◽  
Xuemin (Sherman) Shen

We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients.


2010 ◽  
Vol 6 (1) ◽  
pp. 581081 ◽  
Author(s):  
Wei Yuan ◽  
Xiangyu Wang ◽  
Jean-Paul M. G. Linnartz ◽  
Ignas G. M. M. Niemegeers

As IEEE 802.15.4 Wireless Sensor Networks (WSNs) and IEEE 802.11b/g Wireless Local Area Networks (WLANs) are often collocated, coexistence issues arise as these networks share the same 2.4 GHz Industrial, Scientific, and Medical (ISM) band. Consequently, their performance may degrade. We have proposed a coexistence model of IEEE 802.15.4 and IEEE 802.11b/g networks, which addresses their coexistence behavior and explains their coexistence performance. As an extension of the previous work, a compact testbed was developed and experiments on the coexistence issues between these networks were conducted. The experiments not only validated the theoretical model but also provided more information and insights about the coexistence issues in the real-life environment.


Author(s):  
Khaled Shuaib ◽  
Mohamed Boulmalf

Recently applications and technologies utilizing the free industrial, scientific, and medical (ISM) band have grown exponentially. Mainly there are three dominant technologies operating at the ISM 2.4 GHz band, IEEE 802.11 b/g, Bluetooth and IEEE 802.15.4 or Zigbee. With the diverse deployment and broad range of applications running over such technologies, it is inevitable that radio channel interference between devices utilizing such technologies exist. In this chapter we focus on co-existence issues between such technologies and on the quantification of the impact of Bluetooth on IEEE 802.11b/g.


2014 ◽  
Vol 526 ◽  
pp. 330-335
Author(s):  
Fu Qiang Wang ◽  
Xiao Ming Wu ◽  
Yong Pang ◽  
Yan Liang ◽  
Yi Fan Hu

This The IEEE 802.15.4 devices are proposed to operate in the 2.4 GHz industrial, scientific and medical (ISM) band. The other devices that use IEEE 802.11 b, g and n share the same frequency band. The interference caused by these technologies can degrade the performance of an IEEE 802.15.4 based wireless network. In this paper we study such degrading effects on a network equipped with IEEE 802.15.4 devices that is exposed to interference in turn with IEEE 802.11 b, g and n. The performance measure in this paper is the link Packet Receive Rate (PRR). Measurements are performed with real-life equipment, in order to quantify coexistence issues. We test all 16 channels of IEEE 802.15.4 in 2.4G band and the results show the decrease of PRR when suffering in close frequency with IEEE 802.11. The connection between energy detection and PRR is also exhibited in this paper.


Sign in / Sign up

Export Citation Format

Share Document