Co-Existence of WLAN and WPAN Communication Systems

Author(s):  
Khaled Shuaib ◽  
Mohamed Boulmalf

Recently applications and technologies utilizing the free industrial, scientific, and medical (ISM) band have grown exponentially. Mainly there are three dominant technologies operating at the ISM 2.4 GHz band, IEEE 802.11 b/g, Bluetooth and IEEE 802.15.4 or Zigbee. With the diverse deployment and broad range of applications running over such technologies, it is inevitable that radio channel interference between devices utilizing such technologies exist. In this chapter we focus on co-existence issues between such technologies and on the quantification of the impact of Bluetooth on IEEE 802.11b/g.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yishui Shui ◽  
Fang Li ◽  
Junyi Yu ◽  
Wei Chen ◽  
Changzhen Li ◽  
...  

This paper reports the results of a car-following measurement of the wireless propagation channel at 5.9 GHz on a seriously congested urban road in Wuhan, China. The small-scale amplitude-fading distribution was determined to be a Ricean distribution using the Akaike information criterion. This result shows that this car-following scenario can be regarded as a line-of-sight radio channel. Moreover, the statistical K-factor features follow a Gaussian distribution. According to the power delay profile and average power delay profile, we found that street buildings in this dense urban environment contributed to very strong reflection phenomena. The impact of a powerful reflection is analyzed through path loss, delay, and Doppler spreads in the channel statistical properties. In the frequency domain, we observe a U-shape delay-Doppler spectrum that proved that the dense urban scenario consists of scattering channels. All these results are summarized in tabular form that will be useful in the modeling of vehicle-to-vehicle wireless communication systems.


2013 ◽  
Vol 694-697 ◽  
pp. 2495-2499
Author(s):  
Zhen Quan Qin ◽  
Xiao Li ◽  
Jia Ning Zhang

With the increased popularity and deployment of WLANs, a major challenge is how to efficiently assign these available channels in order to optimize the network performance. In this paper, we design a testbed to analyze the effect of Channel Interference and RSSI in IEEE 802.11b PCF. We have observed that the performance of all hosts is subject to important signal fading and interference. We believe that the data collected by our experiments may be of interest to network designers who want to know the effective capabilities before their deployment.


2010 ◽  
Vol 6 (1) ◽  
pp. 581081 ◽  
Author(s):  
Wei Yuan ◽  
Xiangyu Wang ◽  
Jean-Paul M. G. Linnartz ◽  
Ignas G. M. M. Niemegeers

As IEEE 802.15.4 Wireless Sensor Networks (WSNs) and IEEE 802.11b/g Wireless Local Area Networks (WLANs) are often collocated, coexistence issues arise as these networks share the same 2.4 GHz Industrial, Scientific, and Medical (ISM) band. Consequently, their performance may degrade. We have proposed a coexistence model of IEEE 802.15.4 and IEEE 802.11b/g networks, which addresses their coexistence behavior and explains their coexistence performance. As an extension of the previous work, a compact testbed was developed and experiments on the coexistence issues between these networks were conducted. The experiments not only validated the theoretical model but also provided more information and insights about the coexistence issues in the real-life environment.


2014 ◽  
Vol 526 ◽  
pp. 330-335
Author(s):  
Fu Qiang Wang ◽  
Xiao Ming Wu ◽  
Yong Pang ◽  
Yan Liang ◽  
Yi Fan Hu

This The IEEE 802.15.4 devices are proposed to operate in the 2.4 GHz industrial, scientific and medical (ISM) band. The other devices that use IEEE 802.11 b, g and n share the same frequency band. The interference caused by these technologies can degrade the performance of an IEEE 802.15.4 based wireless network. In this paper we study such degrading effects on a network equipped with IEEE 802.15.4 devices that is exposed to interference in turn with IEEE 802.11 b, g and n. The performance measure in this paper is the link Packet Receive Rate (PRR). Measurements are performed with real-life equipment, in order to quantify coexistence issues. We test all 16 channels of IEEE 802.15.4 in 2.4G band and the results show the decrease of PRR when suffering in close frequency with IEEE 802.11. The connection between energy detection and PRR is also exhibited in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 597
Author(s):  
Kamil Bechta ◽  
Cezary Ziółkowski ◽  
Jan M. Kelner ◽  
Leszek Nowosielski

Multi-beam antenna systems are the basic technology used in developing fifth-generation (5G) mobile communication systems. In practical implementations of 5G networks, different approaches are used to enable a massive multiple-input-multiple-output (mMIMO) technique, including a grid of beams, zero-forcing, or eigen-based beamforming. All of these methods aim to ensure sufficient angular separation between multiple beams that serve different users. Therefore, ensuring the accurate performance evaluation of a realistic 5G network is essential. It is particularly crucial from the perspective of mMIMO implementation feasibility in given radio channel conditions at the stage of network planning and optimization before commercial deployment begins. This paper presents a novel approach to assessing the impact of a multi-beam antenna system on an intra-cell interference level in a downlink, which is important for the accurate modeling and efficient usage of mMIMO in 5G cells. The presented analysis is based on geometric channel models that allow the trajectories of propagation paths to be mapped and, as a result, the angular power distribution of received signals. A multi-elliptical propagation model (MPM) is used and compared with simulation results obtained for a statistical channel model developed by the 3rd Generation Partnership Project (3GPP). Transmission characteristics of propagation environments such as power delay profile and antenna beam patterns define the geometric structure of the MPM. These characteristics were adopted based on the 3GPP standard. The obtained results show the possibility of using the presented novel MPM-based approach to model the required minimum separation angle between co-channel beams under line-of-sight (LOS) and non-LOS conditions, which allows mMIMO performance in 5G cells to be assessed. This statement is justified because for 80% of simulated samples of intra-cell signal-to-interference ratio (SIR), the difference between results obtained by the MPM and commonly used 3GPP channel model was within 2 dB or less for LOS conditions. Additionally, the MPM only needs a single instance of simulation, whereas the 3GPP channel model requires a time-consuming and computational power-consuming Monte Carlo simulation method. Simulation results of intra-cell SIR obtained this way by the MPM approach can be the basis for spectral efficiency maximization in mMIMO cells in 5G systems.


2019 ◽  
Vol 7 (1) ◽  
pp. 62-72
Author(s):  
Shatha Abbas Hassan ◽  
Noor Ali Aljorani

The increasing importance of the information revolution and terms such as ‘speed’, ‘disorientation’, and ‘changing the concept of distance’, has provided us with tools that had not been previously available. Technological developments are moving toward Fluidity, which was previously unknown and cannot be understood through modern tools. With acceleration of the rhythm in the age we live in and the clarity of the role of information technology in our lives, as also the ease of access to information, has helped us to overcome many difficulties. Technology in all its forms has had a clear impact on all areas of daily life, and it has a clear impact on human thought in general, and the architectural space in particular, where the architecture moves from narrow spaces and is limited to new spaces known as the ‘breadth’, and forms of unlimited and stability to spaces characterized with fluidity. The research problem (the lack of clarity of knowledge about the impact of vast information flow associated with the technology of the age in the occurrence of liquidity in contemporary architectural space) is presented here. The research aims at defining fluidity and clarifying the effect of information technology on the changing characteristics of architectural space from solidity to fluidity. The research follows the analytical approach in tracking the concept of fluidity in physics and sociology to define this concept and then to explain the effect of Information Technology (IT) to achieve the fluidity of contemporary architectural space, leading to an analysis of the Skidmore, Owings and Merrill (SOM) architectural model. The research concludes that information technology achieves fluidity through various tools (communication systems, computers, automation, and artificial intelligence). It has changed the characteristics of contemporary architectural space and made it behave like an organism, through using smart material.


Sign in / Sign up

Export Citation Format

Share Document