close frequency
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 14)

H-INDEX

4
(FIVE YEARS 2)

Author(s):  
David Mascali ◽  
Eugenia Naselli ◽  
Richard Racz ◽  
Sándor Biri ◽  
Luigi Celona ◽  
...  

Abstract We hereby report the study of confinement and electron losses dynamics in the magnetic trap of an Electron Cyclotron Resonance Ion Source (ECRIS) using a special multi-diagnostic setup that has allowed the simultaneous collection of plasma radio-self-emission and X-ray images in the range 500 eV - 20 keV. Argon plasmas were generated in single and two close frequency heating (TCFH) modes. Evidences of turbulent regimes have been found: for stable and unstable configurations quantitative characterizations of the plasma radio self-emission have been carried out, then compared with local measurement of plasma energy content evaluated by X-ray imaging. This imaging method is the only one able to clearly separate X-ray radiation coming from the plasma from the one coming from the plasma chamber walls. X-ray imaging has been also supported and benchmarked by volumetric spectroscopy performed via SDD and HPGe detectors. The obtained results in terms of X-ray intensity signal coming from the plasma core and from the plasma chamber walls have permitted to estimate the average ratio: plasma vs. walls (i.e., plasma losses) as a function of input RF power and pumping wave frequency, showing an evident increase (above the experimental errors) of the intensity in the 2-20 keV energy range due to the plasma losses in case of unstable plasma. This ratio was well correlated with the strength of the instabilities, in single frequency heating (SFH) operation mode; in TCFH mode, under specific power balance conditions and frequency combinations, it was possible to damp the instabilities, thus the plasma losses were observed to decrease and a general reconfiguration of the spatial plasma structure occurred (the X-ray emission was more concentrated in the center of the plasma chamber). In the end, a simplified model has been used to simulate electron heating under different pumping frequencies, discussing the impact of velocity anisotropy vs. the onset of the instability, and the mechanism of particles diffusion in the velocity space in stable and unstable regimes.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2504
Author(s):  
Zulfikar Zulfikar ◽  
Norhayati Soin ◽  
Sharifah Fatmadiana Wan Muhamad Hatta ◽  
Mohamad Sofian Abu Talip

The main issue of ring oscillator physical unclonable functions (RO-PUF) is the existence of unstable ROs in response to environmental variations. The RO pairs with close frequency differences tend to contribute bit flips, reducing the reliability. Research on improving reliability has been carried out over the years. However, it has led to other issues, such as decreasing the uniqueness and increasing the area utilized. Therefore, this paper proposes a uniform RO-PUF, requiring a smaller area than a conventional design, aiming to balance reliability and uniqueness. We analyzed RO runtimes to increase reliability. In general, our method (uniqueness = 47.48%, reliability = 99.16%) performs better than previously proposed methods for a similar platform (Altera), and the reliability is as good as the latest methods using the same IC technology (28 nm). Moreover, the reliability is higher than that of RO-PUF with challenge and response pair (CRP) enhancements. The evaluation was performed in longer runtimes, where the pulses produced by ROs exceeded the counter capacity. This work recommends choosing ranges of the runtime of RO for better performance. For the 11-stage ROs, the range should be 1.598–4.30 ms, or 6.12–8.61 ms, or 12.24–12.91 ms. Meanwhile, for the 20-stage, the range should be 2.717–8.37 ms, or 10.97–16.74 ms, or 21.93–25.10 ms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ge Liu ◽  
Bin Chen

AbstractThe pressure signal of oil pulsating flow is a kind of multi-component signal; in order to realise the effective separation of the multi-component pressure signal and extract its vibration characteristics, the pressure signal was decomposed by Variational Mode Decomposition (VMD). The slope criterion of the centre frequency is proposed to determine the number of components of VMD decomposition, and the method to judge the main components of the signal by energy value is proposed. The Hilbert envelope demodulation analysis was performed on the main components obtained. The results show that the proposed center frequency slope criterion method is effective in the VMD decomposition of the pressure signal of oil pulsating flow, which is used to decompose the pressure signal into 9 components. Four major components of the pressure signal are obtained by the correlation between each component and the pressure signal, and the energy value calculation of each component. The main component frequency of the pressure signal is one time, 6 times, 11 times and 14 times the frequency of the system spindle rotation; these are the sum of two cosine signals of close frequency and have the characteristic of beat vibration.


Author(s):  
Thanh Binh Nguyen ◽  
Keisuke Sakakibara ◽  
Naobumi Michishita ◽  
Hisashi Morishita ◽  
Teruki Miyazaki ◽  
...  

Author(s):  
Jakob von Saldern ◽  
Alessandro Orchini ◽  
Jonas Moeck

Abstract Heavy-duty gas turbines are commonly designed with can-annular combustors, in which all flames are physically separated. Acoustically, however, the cans communicate via the upstream located compressor plenum, or at the downstream gaps found at the transition to the turbine inlet. In the present study, a coupling condition that is based on a Rayleigh conductivity and acoustic flux conservation is derived. It enables acoustic communication between adjacent cans, in which one-dimensional acoustic waves propagate. In addition, because can-annular systems commonly feature a discrete rotational symmetry, the acoustic field can be expressed as a Bloch-periodic wave in the azimuthal direction. We demonstrate how the coupling conditions resulting in a combustion system with $N$ cans can be expressed as an effective impedance for a single can. By means of this Bloch-type boundary condition, the thermoacoustics of a can-annular system can be analyzed considering only one can, thus reducing the size of the problem by a factor of N. Using this method, we investigate in frequency domain the effect of the coupling strength of a generic can-annular combustor consisting of 12 identical cans, which are connected at the downstream end. We describe generic features of can-annular systems and derive results on the frequency response of the cans at various Bloch numbers in the low-frequency and high-frequency limits. Furthermore, the formation of eigenvalue clusters with eigenvalues of close frequency and growth rate, but very different mode shapes is discussed.


Author(s):  
Jakob G. R. von Saldern ◽  
Alessandro Orchini ◽  
Jonas P. Moeck

Abstract Heavy-duty gas turbines are commonly designed with canannular combustors, in which all flames are physically separated. Acoustically, however, the cans communicate via the upstream located compressor plenum, or at the downstream gaps found at the transition to the turbine inlet. In the present study, a coupling condition that is based on a Rayleigh conductivity and acoustic flux conservation is derived. It enables acoustic communication between adjacent cans, in which one-dimensional acoustic waves propagate. In addition, because can-annular systems commonly feature a discrete rotational symmetry, the acoustic field can be expressed as a Bloch-periodic wave in the azimuthal direction. We demonstrate how the coupling conditions resulting in a combustion system with N cans can be expressed as an effective impedance for a single can. By means of this Bloch-type boundary condition, the thermoacoustics of a can-annular system can be analyzed considering only one can, thus reducing the size of the problem by a factor of N. Using this method, we investigate in frequency domain the effect of the coupling strength of a generic can-annular combustor consisting of 12 identical cans, which are connected at the downstream end. We describe generic features of can-annular systems that can be efficiently addressed with this framework and derive results on the frequency response of the cans at various Bloch numbers in the low-frequency and high-frequency limits. Furthermore, the formation of eigenvalue clusters with eigenvalues of close frequency and growth rate, but very different mode shapes is discussed.


2020 ◽  
Vol 1 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Marine Canton ◽  
Richard Roe ◽  
Stéphane Poigny ◽  
Jean-Hugues Renault ◽  
Jean-Marc Nuzillard

Abstract. The analysis by proton-decoupled carbon-13 nuclear magnetic resonance spectroscopy of samples dissolved in solvents presenting strong multiple resonances can be facilitated by the suppression of these resonances by multisite presaturation. The advantage drawn from this operation is the elimination of the possible artifacts that arise from the solvent signals in non-optimized decoupling conditions. Solvent presaturation was implemented on glycerol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, and 1,3-butanediol with at least 94 % on-resonance efficiency and a bandwidth of less than 50 Hz measured at 50 % signal intensity decrease. The experimental measurement of the signal suppression bandwidth leads to unexpected selectivity profiles for close-frequency resonances. Computer resolution of the Bloch equations during multisite presaturation provide an insight into the origin of the observed profile perturbations.


Sign in / Sign up

Export Citation Format

Share Document