Limit cycles and asymptotic stability of delta-operator formulated discrete-time systems implemented in fixed-point arithmetic

Author(s):  
K. Premaratne ◽  
P.H. Bauer
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Priyanka Kokil ◽  
V. Krishna Rao Kandanvli ◽  
Haranath Kar

This paper is concerned with the problem of global asymptotic stability of linear discrete-time systems with interval-like time-varying delay in the state. By utilizing the concept of delay partitioning, a new linear-matrix-inequality-(LMI-) based criterion for the global asymptotic stability of such systems is proposed. The proposed criterion does not involve any free weighting matrices but depends on both the size of delay and partition size. The developed approach is extended to address the problem of global asymptotic stability of state-delayed discrete-time systems with norm-bounded uncertainties. The proposed results are compared with several existing results.


2016 ◽  
Vol 26 (4) ◽  
pp. 551-563
Author(s):  
Tadeusz Kaczorek

Abstract The asymptotic stability of discrete-time and continuous-time linear systems described by the equations xi+1 = Ākxi and x(t) = Akx(t) for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix Āk and of the continuous-time systems depends only on phases of the eigenvalues of the matrix Ak, 2) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.


2020 ◽  
Vol 19 (04) ◽  
pp. 2050040
Author(s):  
Saddam Hussain Malik ◽  
Muhammad Tufail ◽  
Muhammad Rehan ◽  
Shakeel Ahmed

Finite word length is a practical limitation when discrete-time systems are implemented by using digital hardware. This restriction degrades the performance of a discrete-time system and may even lead it toward instability. This paper, addresses the stability and disturbance attenuation performance analysis of nonlinear discrete-time systems under the influence of energy-bounded external interferences when such systems are subjected to quantization and overflow effects of fixed point hardware. The proposed methodology, in comparison with previous paper, describes exponential stability for the nonlinear discrete-time systems by considering composite nonlinearities of digital hardware. The proposed criteria that ensure exponential stability and [Formula: see text] performance index for the digital systems under consideration are presented in the form of a set of linear matrix inequalities (LMIs) by exploiting Lyapunov stability theory, Lipschitz condition and sector conditions for different types of commonly used quantization and overflow arithmetic properties, and the results are validated for recurrent neural networks. Furthermore, novel stability analysis results for a nonlinear discrete-time system under hardware constraints can also be observed as a special case of the proposed criteria.


Sign in / Sign up

Export Citation Format

Share Document