Control of inverted pendulum using adaptive neuro fuzzy inference structure (ANFIS)

Author(s):  
Ravi Chandra Tatikonda ◽  
Venkata Praveen Battula ◽  
Vijay Kumar
Fuzzy Systems ◽  
2017 ◽  
pp. 308-320
Author(s):  
Ashwani Kharola

This paper illustrates a comparison study of Fuzzy and ANFIS Controller for Inverted Pendulum systems. IP belongs to a class of highly non-linear, unstable and multi-variable systems which act as a testing bed for many complex systems. Initially, a Matlab-Simulink model of IP system was proposed. Secondly, a Fuzzy logic controller was designed using Mamdani inference system for control of proposed model. The data sets from fuzzy controller was used for development of a Hybrid Sugeno ANFIS controller. The results shows that ANFIS controller provides better results in terms of Performance parameters including Settling time(sec), maximum overshoot(degree) and steady state error.


Author(s):  
Mohammed A. A. Al-Mekhlafi ◽  
Herman Wahid ◽  
Azian Abd Aziz

The inverted pendulum is an under-actuated and nonlinear system, which is also unstable. It is a single-input double-output system, where only one output is directly actuated. This paper investigates a single intelligent control system using an adaptive neuro-fuzzy inference system (ANFIS) to stabilize the inverted pendulum system while tracking the desired position. The non-linear inverted pendulum system was modelled and built using MATLAB Simulink. An adaptive neuro-fuzzy logic controller was implemented and its performance was compared with a Sugeno-fuzzy inference system in both simulation and real experiment. The ANFIS controller could reach its desired new destination in 1.5 s and could stabilize the entire system in 2.2 s in the simulation, while in the experiment it took 1.7 s to reach stability. Results from the simulation and experiment showed that ANFIS had better performance compared to the Sugeno-fuzzy controller as it provided faster and smoother response and much less steady-state error.


2016 ◽  
Vol 78 (6-11) ◽  
Author(s):  
Amir A. Bature ◽  
Salinda Buyamin ◽  
Mohamed N. Ahmad ◽  
Mustapha Muhammad ◽  
Auwalu M. Abdullahi

Velocity tracking is one of the important objectives of vehicle, machines and mobile robots. A two wheeled inverted pendulum (TWIP) is a class of mobile robot that is open loop unstable with high nonlinearities which makes it difficult to control its velocity because of its nature of pitch falling if left unattended. In this work, three soft computing techniques were proposed to track a desired velocity of the TWIP. Fuzzy Logic Control (FLC), Neural Network Inverse Model control (NN) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) were designed and simulated on the TWIP model. All the three controllers have shown practically good performance in tracking the desired speed and keeping the robot in upright position and ANFIS has shown slightly better performance than FLC, while NN consumes more energy.  


2016 ◽  
Vol 5 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Ashwani Kharola

This paper illustrates a comparison study of Fuzzy and ANFIS Controller for Inverted Pendulum systems. IP belongs to a class of highly non-linear, unstable and multi-variable systems which act as a testing bed for many complex systems. Initially, a Matlab-Simulink model of IP system was proposed. Secondly, a Fuzzy logic controller was designed using Mamdani inference system for control of proposed model. The data sets from fuzzy controller was used for development of a Hybrid Sugeno ANFIS controller. The results shows that ANFIS controller provides better results in terms of Performance parameters including Settling time(sec), maximum overshoot(degree) and steady state error.


2006 ◽  
Vol 3 (4) ◽  
pp. 1795-1802 ◽  
Author(s):  
A.A. Saifizul ◽  
Z. Zainon ◽  
N.A Abu Osman ◽  
C.A. Azlan ◽  
U.F.S Ungku Ibrahim

Sign in / Sign up

Export Citation Format

Share Document