Priority Based Traffic Pre-emption System for Medical Emergency Vehicles in Smart Cities

Author(s):  
Olasupo Ajayi ◽  
Antoine Bagula ◽  
Ifeoma Chukwubueze ◽  
Hloniphani Maluleke
Author(s):  
Hayder M. Amer ◽  
Hayder A. A. Al-Kashoash ◽  
Andrew Kemp ◽  
Lyudmila Mihaylova ◽  
Martin Mayfield

The traffic congestion is one of the major problems in crowded cities, which causes people to spend hours on the road. In traffic congestion situations, finding alternate routes for emergency vehicles, which provides shortest travel time to nearby hospital is critically life-saving issue. In this paper, we propose a traffic management system and an algorithm for routing of an emergency vehicle. The algorithm uses distance between source and destination, maximum vehicle count, maximum speed, average speed, traffic light conditions on the roads, which are assumed to support vehicle-to-infrastructure (V2I) communication in 5G IoT network. Simulations are performed on CupCarbon IoT simulator platform for various test scenarios. The performance of the proposed emergency vehicle routing algorithm is compared against well known Link State algorithm. And, the results demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 13 (21) ◽  
pp. 11772
Author(s):  
Afifa Nawaz ◽  
Nazir Ahmad Zafar ◽  
Eman H. Alkhammash

Internet of things (IoT) is playing a major role in smart cities to make a digital environment. Traffic congestion is a serious road issue because of an increasing number of vehicles in urban areas. Some crucial traffic problems include accidents and traffic jams that cause waste of fuel, health diseases, and a waste of time. Present traffic signaling systems are not efficient in resolving congestion problems because of the lack of traffic signals. Nowadays, traffic signaling systems are modeled with fixed time intervals in which no proper mechanism for emergency vehicles is available. Such traffic mechanisms failed to deal with traffic problems effectively. The major objective is to establish a robust traffic monitoring and signaling system that improves signal efficiency by providing a responsive scheme; appropriate routes; a mechanism for emergency vehicles and pedestrians in real-time using Vienna Development Method Specification Language (VDM-SL) formal method and graph theory. A formal model is constructed by considering objects, such as wireless sensors and cameras that are used for collecting information. Graph theory is used to represent the network and find appropriate routes. Unified Modeling Language is used to design the system requirements. The graph-based framework is converted into a formal model by using VDM-SL. The model has been validated and analyzed using many facilities available in the VDM-SL toolbox.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Samir A. Elsagheer Mohamed ◽  
Khaled A. AlShalfan

The present era is marked by rapid improvement and advances in technology. One of the most essential areas that demand improvement is the traffic signal, as it constitutes the core of the traffic system. This demand becomes stringent with the development of Smart Cities. Unfortunately, road traffic is currently controlled by very old traffic signals (tri-color signals) regardless of the relentless effort devoted to developing and improving the traffic flow. These traditional traffic signals have many problems including inefficient time management in road intersections; they are not immune to some environmental conditions, like rain; and they have no means of giving priority to emergency vehicles. New technologies like Vehicular Ad-hoc Networks (VANET) and Internet of Vehicles (IoV) enable vehicles to communicate with those nearby and with a dedicated infrastructure wirelessly. In this paper, we propose a new traffic management system based on the existing VANET and IoV that is suitable for future traffic systems and Smart Cities. In this paper, we present the architecture of our proposed Intelligent Traffic Management System (ITMS) and Smart Traffic Signal (STS) controller. We present local traffic management of an intersection based on the demands of future Smart Cities for fairness, reducing commute time, providing reasonable traffic flow, reducing traffic congestion, and giving priority to emergency vehicles. Simulation results showed that the proposed system outperforms the traditional management system and could be a candidate for the traffic management system in future Smart Cities. Our proposed adaptive algorithm not only significantly reduces the average waiting time (delay) but also increases the number of serviced vehicles. Besides, we present the implemented hardware prototype for STS.


Sign in / Sign up

Export Citation Format

Share Document