Experimental Study on Wood Crib Fire Suppression of Water Mist with Additives

Author(s):  
Cui Yongyi ◽  
Qu Fang ◽  
Fanlin Cui ◽  
Zhang Jun
2013 ◽  
Vol 790 ◽  
pp. 53-56
Author(s):  
Chen Jian ◽  
Xu Yan Ying ◽  
Wang Na

This paper presents an experimental study of fire suppression effectiveness with water mist containing FeCl2 additives.The investigation focuses on suppression effectiveness under various FeCl2 additives concentrations,working pressures and nozzle different height above the fire source . The experimental results show that: there is a significant impact on fire suppression effectiveness when adding FeCl2 to water mist. There is an optimum additive concentration of extinguishing fire, corresponding to the shortest extinguishing time, the least amount of water, the highest efficiency of extinguishing fire. The nozzle working pressures and nozzle position have effect on the performance of the water mist extinguishing: the greater the pressure is, the shorter water mist fire extinguishing time is. Under the same experimental conditions, the closer the water mist nozzles are to the oil pan, the shorter extinguishing time is.


2012 ◽  
Vol 30 (2) ◽  
pp. 138-157 ◽  
Author(s):  
Na Meng ◽  
Longhua Hu ◽  
Shuai Liu ◽  
Long Wu ◽  
Longfei Chen ◽  
...  

2012 ◽  
Vol 166-169 ◽  
pp. 2804-2809 ◽  
Author(s):  
Jian Chen

Abstract. The effects of flow coefficients, working pressures and different spray distances on extinguishing cooking oil fires by water mist were studied by experiment. The results show that the fire suppression effectiveness is increased with the increase of flow coefficient and working pressure, spray distance also affects the fire extinguishment efficiency of water mist. Reasonable conditions and designing parameters for practical engineering application of water mist are suggested.


2018 ◽  
Vol 67 ◽  
pp. 04039
Author(s):  
Kuswantoro ◽  
Y.S. Nugroho

This study aims to investigate the effectiveness of water mist on suppressing a shielded fire. Full-scale experiments are carried out in a partition room of (lxwxh) 2x2x2.5 m size. Five water mist nozzle which consist of two type nozzle was used, high flow (fogjet) nozzle installed at top center of the room and fine spray nozzle installed at each side of room at high 1.5 m from ground. The pressure of water mist system was maintained at 20 bar which correspond to 2.6 lpm of water flow rate. Wood crib of 6.5 x 6.5 x 6 cm size was used as the fuel source. The obstruction used as a fuel shield has table like form with 40 x 40 cm cover area and 0.5 m height. The location of fuel source and fuel shield was varied (1) fuel source and shield at centre of room, (2) fuel source at one side of shield and the shield at centre of room, (3) fuel source and shield at corner of room, and (4)) fuel source at one side of shield and the shield at corner of room. Numerical simulation using FDS 6.5.3 was also performed to validate the use of FDS and get better understanding of the phenomena. The results showed that water mist was able to extinguish the fire around 20 s, 16 s, 30 s, and 24 s for scenario 1, 2, 3 and 4 respectively. It is also observe that the mist distribution around the shield and cover area of the shield play a role on the capacity and time needed of water mist to extinguish the fire.


Sign in / Sign up

Export Citation Format

Share Document