fine spray
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 0)

2020 ◽  
Vol 10 (16) ◽  
pp. 5723
Author(s):  
Jens Frühhaber ◽  
Christian Lieber ◽  
Dominik Mattes ◽  
Thomas Lauer ◽  
Rainer Koch ◽  
...  

Ammonia preparation from urea-water solutions is a key feature to ensure an effective reduction of nitrogen oxides in selective catalytic reduction (SCR) systems. Thereby, air-assisted nozzles provide fine sprays, which enhance ammonia homogenization. In the present study, a methodology was developed to model the spray formation by means of computational fluid dynamics (CFD) for this type of atomizer. Experimental validation data was generated in an optically accessible hot gas test bench using a shadowgraphy setup providing droplet velocities and size distributions at designated positions inside the duct. An adaption of the turbulence model was performed in order to correct the dispersion of the turbulent gas jet. The spray modeling in the near nozzle region is based on an experimentally determined droplet spectrum in combination with the WAVE breakup model. This methodology was applied due to the fact that the emerging two-phase flow will immediately disintegrate into a fine spray downstream the nozzle exit, which is also known from cavitating diesel nozzles. The suitability of this approach was validated against the radial velocity and droplet size distributions at the first measurement position downstream the nozzle. In addition, the simulation results serve as a basis for the investigation of turbulent dispersion phenomena and evaporation inside the spray.


2020 ◽  
Vol 328 ◽  
pp. 01008
Author(s):  
Marek Mlkvik

The effervescent atomizer is a well-established type of the twin-fluid nozzle with internal mixing of fluids. It is popular for the ability to process highly viscous liquids, such as liquid fuels, into a fine spray with low gas consumption. This study aims to investigate the performance of the effervescent nozzle when spraying the liquids with a viscosity up to 308 mPa·s. The working parameters of the nozzle were defined by the mass flows ratio of the gas to the liquid (GLR =2.5 to 20 %) and the gas pressure at the nozzle inlet (Δp = 0.14 MPa). The spray quality was investigated by the laser diffraction system, measuring the spray drop sizes. The investigated nozzle was able to atomize all of the model liquids. However, the liquid viscosity increase led to the need to operate the nozzle with the larger gas consumption. The minimum GLR for the spraying of the liquid with the viscosity 308 mPa·s was 10 %, while the less viscous liquid (60 mPa·s) was processed with the GLR = 2.5 %. It was observed that the spray quality was, at the low GLRs, lowered by unstable nozzle work, caused by the presence of the plug flow in the mixing chamber of the atomizer.


2020 ◽  
Vol 6 ◽  
pp. 205951312095192
Author(s):  
Kayvan Shokrollahi ◽  
Ioannis Kyriazidis ◽  
Shomari Zak-Williams ◽  
Claire Jones ◽  
Elisa Murgatroyd ◽  
...  

Introduction: Many healthcare workers have contracted SARS-CoV-2 during the pandemic, many cases of which have resulted in severe illness and death. No studies have assessed the potential for powered dermatomes to generate aerosol, an essential technique in burns and plastic surgery. The primary aim of the present study was to capture video footage to illustrate the potential for a powered dermatome to generate significant spray and hence aerosol. Methods: We utilised a simulated skin graft harvest experimental method. Fluorescein-stained saline was used with ultraviolet (UV) backlighting to demonstrate fluorescent spray from a popular brand of air-powered dermatome. Ultra-slow-motion (960 frames/s) video was used to demonstrate the oscillation of the dermatome blade and the origin within the machine of any spray generated, and the extent of spray generated. Results: The key finding from this study is the captured video footage linked with this paper. Droplets of various sizes are seen spraying out from the leading edge at the sides where the blade oscillates. UV backlighting provides a clear demonstration of the dermatome generating fine spray. Conclusion: Our study demonstrates that powered dermatome usage is likely to generate aerosol from blood or blood-contaminated fluid, but does not demonstrate or quantify to what extent this may be clinically relevant in terms of viral transmission potential. We suggest ways to reduce the risk of spray from dermatomes including limiting donor-site bleeding and avoiding a wet donor area. Lay Summary A dermatome is a device used by surgeons to harvest split skin grafts (SSGs). SSGs are an essential component of burns and reconstructive plastic surgery. Aerosol-generating procedures (AGPs) have implications for transmission of viruses including COVID-19. It has not previously been formally assessed whether use of a dermatome should be classified as an AGP. This study uses a fluorescent dye in the context of simulated surgery using a dermatome to see if any, and how much, fine spray is generated from the device and also utilises ultra-slow-motion videography to see how any spray may be generated. At the heart of this study is the included video footage that demonstrates considerable fine spray generation which suggests it is best to assume that dermatomes are likely to generate some degree of aerosol depending on the clinical scenario and how it is used. However, this information does not translate to providing any information about the risk of transmission of the virus from using a dermatome, especially in relation to COVID-19, and separate research would be required to answer this.


2018 ◽  
Vol 138 (5) ◽  
pp. 254-260 ◽  
Author(s):  
L Steege ◽  
G Moore

Aims: To determine the presence and prevalence of Legionella spp in domestic rainwater storage butts and to quantify its aerosolisation when collected rainwater is used for common gardening activities. Methods: Volunteers were asked to take a water sample from their garden rainwater storage butt. The presence of Legionella was determined using quantitative polymerase chain reaction (qPCR). Two new rainwater storage butts were installed on-site at PHE Porton and positioned in sunlight or in the shade. Ambient conditions and those within the two ‘experimental’ water butts were continually monitored. A cyclone air sampler was used to detect the presence of Legionella in the air when collected rainwater was poured from a watering can or delivered via a hosepipe attached to a submersible water butt pump. Results: A total of 63 volunteers provided water samples from 113 different rainwater storage butts. Legionella spp was detected in 107 of these samples at a mean concentration of 4.7 × 104 genomic units l–1. Two of these samples also contained L. pneumophila. The water butt positioned in the shade stored water at a significantly lower temperature than that exposed to sunlight. While the concentration of Legionella was significantly higher in this cooler water, meteorological conditions rather than conditions within the water butt had the greatest effect upon Legionella concentration. No Legionella was detected in the air when rainwater was poured from a watering can. However, using a hose pipe on a ‘fine spray’ setting increased both the number of organisms detected in the air and their dissemination. Conclusion: In this study, Legionella spp were common contaminants of collected rainwater. However, the use of rainwater for common gardening activities should not be discouraged. Aerosolisation of Legionella when using a watering can is minimal and any increased risk associated with hose pipe use can be mitigated by using a coarse spray setting.


2018 ◽  
Vol 915 ◽  
pp. 22-27
Author(s):  
Seiichi Sudo ◽  
Hiroki Kuwano

The interfacial dynamics of a water droplet subjected to SAW (surface acoustic wave) was investigated using a high-speed video camera analysis system. The SAW device was fabricated to generate high frequency vibration for the droplet excitation. The water droplet showed bursting into a fine spray of smaller droplets and ultra-fine mist at the higher applied voltage to the SAW device. The appearance of droplet interface varied with elapsed time of surface acoustic wave excitation. At the initial stage after SAW excitation, capillary surface waves were observed on the droplet interface. Subsequently, surface disintegration due to fine spray and mist ejection was observed. The details of surface response of water droplet on the SAW device were revealed experimentally.


2018 ◽  
Vol 67 ◽  
pp. 04039
Author(s):  
Kuswantoro ◽  
Y.S. Nugroho

This study aims to investigate the effectiveness of water mist on suppressing a shielded fire. Full-scale experiments are carried out in a partition room of (lxwxh) 2x2x2.5 m size. Five water mist nozzle which consist of two type nozzle was used, high flow (fogjet) nozzle installed at top center of the room and fine spray nozzle installed at each side of room at high 1.5 m from ground. The pressure of water mist system was maintained at 20 bar which correspond to 2.6 lpm of water flow rate. Wood crib of 6.5 x 6.5 x 6 cm size was used as the fuel source. The obstruction used as a fuel shield has table like form with 40 x 40 cm cover area and 0.5 m height. The location of fuel source and fuel shield was varied (1) fuel source and shield at centre of room, (2) fuel source at one side of shield and the shield at centre of room, (3) fuel source and shield at corner of room, and (4)) fuel source at one side of shield and the shield at corner of room. Numerical simulation using FDS 6.5.3 was also performed to validate the use of FDS and get better understanding of the phenomena. The results showed that water mist was able to extinguish the fire around 20 s, 16 s, 30 s, and 24 s for scenario 1, 2, 3 and 4 respectively. It is also observe that the mist distribution around the shield and cover area of the shield play a role on the capacity and time needed of water mist to extinguish the fire.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Sana Ahmad ◽  
Anam Nazir ◽  
Tousif Hussain

Titanium dioxide nanoparticles were prepared by a modified sol-gel route. Titanium butoxide was used as precursor and nebulizer was used for a fine spray of particles. The prepared powders were characterized by FT-IR, SEM, XRD, and TGA-DTA methods. The results indicated that nanoparticles with small size and high surface area were synthesized. XRD result indicated that TiO2 nanoparticles were obtained in pure anatase crystalline form with a crystallite size of 40 nm. The catalytic activity of as-synthesized nanoparticles was tested for the degradation of formic acid and toluene.


2016 ◽  
Vol 30 (2) ◽  
pp. 573-586 ◽  
Author(s):  
Cody F. Creech ◽  
Jesaelen G. Moraes ◽  
Ryan S. Henry ◽  
Joe D. Luck ◽  
Greg R. Kruger

Herbicide applications often do not reach their full potential because only a small amount of the active ingredients reaches the intended targets. Selecting the appropriate application parameters and equipment can allow for improved efficacy. The objective of this research was to evaluate the effect of droplet size on efficacy of six commonly used herbicides. Atrazine (1.12 kg ai ha−1), cloransulam-methyl (0.18 g ai ha−1), dicamba (0.14 kg ae ha−1), glufosinate (0.59 kg ai ha−1), saflufenacil (12.48 g ai ha−1), and 2,4-D (0.20 kg ae ha−1) were applied to seven plant species using an XR11003 nozzle at 138, 276, and 414 kPa and a AI11003 nozzle at 207, 345, and 483 kPa. Each herbicide, nozzle, and pressure combination was evaluated for droplet size spectra. Treatments were applied at 131 L ha−1to common lambsquarters, common sunflower, shattercane, soybean, tomato, velvetleaf, and volunteer corn. Control from 2,4-D was observed to increase approximately 12% on average for all species except common lambsquarters as droplet size increased from medium to very coarse (Dv0.5303 to 462 μm;Dv0.5is droplet size such that 50% of spray volume is contained in droplets of equal or smaller size). Control with atrazine was near 95% for common lambsquarters, common sunflower, and soybean. Atrazine provided the greatest shattercane control using a medium (Dv0.5325 μm) droplet, whereas the same droplet size provided the lowest tomato control. Control of common lambsquarters, shattercane, and tomato with cloransulam-methyl increased 79% when decreasing droplet size from extremely coarse to fine (Dv0.5637 to 228 μm). Dicamba control of common lambsquarters increased 17% using a medium droplet compared with a fine droplet (Dv0.5279 to 204 μm). Dry weight of common sunflower and soybean was reduced 21% using dicamba when using a very coarse spray compared with a fine spray classification (Dv0.5491 to 204 μm). Common lambsquarters control using glufosinate increased 18% using a fine spray classification (Dv0.5186 μm) compared with medium (Dv0.5250 μm) and both very coarse droplet sizes (Dv0.5470 and 516 μm). Conversely, tomato and velvetleaf control with glufosinate was maximized using a very coarse (Dv0.5470 and 516 μm) or extremely coarse droplet (Dv0.5628 μm) with increases of 11 and 25% compared with a fine spray (Dv0.5186 μm). Saflufenacil control of volunteer corn was 38% greater using extremely coarse droplets (Dv0.5622 μm) than fine, medium, and very coarse spray classifications (Dv0.5257 to 514 μm). Overall, spray classifications for the herbicides evaluated play an important role in herbicide efficacy and should be tailored to the herbicide being used and the targeted weed species.


2016 ◽  
Vol 794 ◽  
pp. 506-529 ◽  
Author(s):  
J. O. Marston ◽  
T. T. Truscott ◽  
N. B. Speirs ◽  
M. M. Mansoor ◽  
S. T. Thoroddsen

We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to $1/16\text{th}$ of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line.


2015 ◽  
Vol 25 (2) ◽  
pp. 26 ◽  
Author(s):  
S.J Gates ◽  
G Kornelius ◽  
S.C Rencken ◽  
N.M Fagan ◽  
P Cowx ◽  
...  

During the casting of ferromanganese alloys from electric arc furnaces into sand beds at temperatures of up to 1800°C a considerable amount of very brown fumes are generated when the alloy fume is oxidized in the atmosphere. The fume is difficult to capture because of the large flux of gas that is generated. Possible reasons for this flux include the high evaporation rate of Mn at elevated temperatures, the large surface area of the casting beds and the large thermal plumes over the furnace tapholes and casting beds. It has been found that the use of fine water sprays along the edge of the roof that covers the casting bed resulted in a significant reduction in visible emissions. This paper describes research into the kinetics of the fume to improve the design of the capture hoods, as well as the mechanism of suppression by the water sprays by using CFD analysis. It is shown that the oxidation reaction produces less than 20% of the energy content of the plume over the arc furnace taphole, and also that radiation heat transfer may play an important role in increasing the energy content of the taphole plume. The capture of fume particles by fine spray droplets is shown to have limited efficiency, while the heat sink that is caused by evaporation does not materially contribute to the circulation of fume through the spray. It is postulated that the increased moisture content of the air over the casting beds may be instrumental in reducing the oxygen partial pressure or in the formation of an oxide layer, both of which would reduce metal evaporation and, therefore fume formation. The exact mechanism requires further investigation


Sign in / Sign up

Export Citation Format

Share Document