An Ensemble Machine Learning Based Fault Classification Method for Faults During Power Swing

Author(s):  
Dinesh Patil ◽  
OD Naidu ◽  
Preetham Yalla ◽  
S Hida
2020 ◽  
Vol 10 (15) ◽  
pp. 5251 ◽  
Author(s):  
Rafia Nishat Toma ◽  
Jong-Myon Kim

Bearing fault diagnosis at early stage is very significant to ensure seamless operation of induction motors in industrial environment. The identification and classification of faults helps to undertook maintenance operation in an efficient manner. This paper presents an ensemble machine learning-based fault classification scheme for induction motors (IMs) utilizing the motor current signal that uses the discrete wavelet transform (DWT) for feature extraction. Three wavelets (db4, sym4, and Haar) are used to decompose the current signal, and several features are extracted from the decomposed coefficients. In the pre-processing stage, notch filtering is used to remove the line frequency component to improve classification performance. Finally, the two ensemble machine learning (ML) classifiers random forest (RF) and extreme gradient boosting (XGBoost) are trained and tested using the extracted feature set to classify the bearing fault condition. Both classifier models demonstrate very promising results in terms of accuracy and other accepted performance indicators. Our proposed method achieves an accuracy slightly greater than 99%, which is better than other models examined for the same dataset.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1052
Author(s):  
Baozhong Wang ◽  
Jyotsna Sharma ◽  
Jianhua Chen ◽  
Patricia Persaud

Estimation of fluid saturation is an important step in dynamic reservoir characterization. Machine learning techniques have been increasingly used in recent years for reservoir saturation prediction workflows. However, most of these studies require input parameters derived from cores, petrophysical logs, or seismic data, which may not always be readily available. Additionally, very few studies incorporate the production data, which is an important reflection of the dynamic reservoir properties and also typically the most frequently and reliably measured quantity throughout the life of a field. In this research, the random forest ensemble machine learning algorithm is implemented that uses the field-wide production and injection data (both measured at the surface) as the only input parameters to predict the time-lapse oil saturation profiles at well locations. The algorithm is optimized using feature selection based on feature importance score and Pearson correlation coefficient, in combination with geophysical domain-knowledge. The workflow is demonstrated using the actual field data from a structurally complex, heterogeneous, and heavily faulted offshore reservoir. The random forest model captures the trends from three and a half years of historical field production, injection, and simulated saturation data to predict future time-lapse oil saturation profiles at four deviated well locations with over 90% R-square, less than 6% Root Mean Square Error, and less than 7% Mean Absolute Percentage Error, in each case.


Sign in / Sign up

Export Citation Format

Share Document