An Adaptive Perturb and Observe Method with Clustering for Photovoltaic Module with Smart Bypass Diode under Partial Shading

Author(s):  
Andrew Vinicius Silva Moreira ◽  
Alessandro de Souza Lima ◽  
Andre Laurindo Maitelli ◽  
Luciano Sales Barros
Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4778
Author(s):  
Huixue Ren ◽  
Peide Han

To protect a photovoltaic module from the hot spot effect more efficiently, an AC (alternating current) module that contains a module-level MPPT (maximum power point tracking) has been put forward. In this paper, operation states of shadowed solar cells and relevant bypass diodes were studied through MATLAB/Simulink tools, and a commercial PV module was used to reveal the temperature change when working at different LMPP (local maximum power point). Experiment results show that bypass diode can reduce power loss for the AC module to some extent but has a limited effect on protecting the AC module from the hot spot effect. Instead, it is more likely to form a local hot spot when the bypass diode turns on, and the worst shading condition for the AC module with bypass diode is about 46.5% during work states.


2021 ◽  
Author(s):  
Rakeshkumar Mahto ◽  
Reshma John

A Photovoltaic (PV) cell is a device that converts sunlight or incident light into direct current (DC) based electricity. Among other forms of renewable energy, PV-based power sources are considered a cleaner form of energy generation. Due to lower prices and increased efficiency, they have become much more popular than any other renewable energy source. In a PV module, PV cells are connected in a series and parallel configuration, depending on the voltage and current rating, respectively. Hence, PV modules tend to have a fixed topology. However, in the case of partial shading, mismatching or failure of a single PV cell can lead to many anomalies in a PV module’s functioning. If proper attention is not given, it can lead to the forward biasing of healthy PV cells in the module, causing them to consume the electricity instead of producing it, hence reducing the PV module’s overall efficiency. Hence, to further the PV module research, it is essential to have an approximate way to model them. Doing so allows for understanding the design’s pros and cons before deploying the PV module-based power system in the field. In the last decade, many mathematical models for PV cell simulation and modeling techniques have been proposed. The most popular among all the techniques are diode based PV modeling. In this book chapter, the author will present a double diode based PV cell modeling. Later, the PV module modeling will be presented using these techniques that incorporate mismatch, partial shading, and open/short fault. The partial shading and mismatch are reduced by incorporating a bypass diode along with a group of four PV cells. The mathematical model for showing the effectiveness of bypass diode with PV cells in reducing partial shading effect will also be presented. Additionally, in recent times besides fixed topology of series–parallel, Total Cross-Tied (TCT), Bridge Link (BL), and Honey-Comb (H-C) have shown a better capability in dealing with partial shading and mismatch. The book chapter will also cover PV module modeling using TCT, BL, and H-C in detail.


2015 ◽  
Vol 785 ◽  
pp. 220-224 ◽  
Author(s):  
Jin Chuan Teo ◽  
Rodney H.G. Tan ◽  
V.H. Mok

This paper presents the investigation of partial shading characteristics of mono-crystalline and poly-crystalline photovoltaic module connected in series. Simulink models are developed to assist the investigation to determine the ideality factor for mono-crystalline and poly-crystalline photovoltaic module. Commercially available mono-crystalline and poly-crystalline photovoltaic module are used to extract measurable parameters for the model to study the behaviour of I-V curve. Measurements have been conducted for the investigation includingmono-crystalline only, poly-crystalline only, both unshaded, mono-crystalline shaded and poly-crystalline shaded. This paper contributes to the understanding of partial shading characteristics of different materials presence in photovoltaic string.


2020 ◽  
Vol 10 (11) ◽  
pp. 3912 ◽  
Author(s):  
Altwallbah Neda Mahmod Mohammad ◽  
Mohd Amran Mohd Radzi ◽  
Norhafiz Azis ◽  
Suhaidi Shafie ◽  
Muhammad Ammirrul Atiqi Mohd Zainuri

In this paper, we propose enhanced adaptive step size Perturb and Observe (P&O) maximum power point tracking (MPPT) with properly organized comparison sequences which lead to achieving the actual maximum power point (MPP) effectively in the presence of partial shading conditions, taking into account the optimization of all aspects of high-performance MPPT to be novel, simpler, fast, and accurate, with the best efficiency reaching up to almost 100%. In this study, the proposed algorithm, along with a boost converter, was designed and simulated in MATLAB/Simulink to validate the performance of the suggested technique. Four different levels of partial shading conditions were considered for system examination: weak, moderate, and two different levels of strong shading. Each case was applied separately first and then combined in a sequence arrangement to provide robust and comprehensive testing which can provide a guaranteed assessment of the proposed algorithm. The performance of the suggested technique is discussed and compared with that of conventional P&O and conventional incremental conductance (IC) MPPT techniques. The failure of the conventional techniques to work efficiently in the presence of partial shading conditions was observed from the simulation results. Meanwhile, the success of the proposed technique and its high performance were clearly confirmed under partial shading conditions with no increase in complexity or convergence time.


Energy ◽  
2020 ◽  
Vol 191 ◽  
pp. 116491 ◽  
Author(s):  
J.C. Teo ◽  
Rodney H.G. Tan ◽  
V.H. Mok ◽  
Vigna K. Ramachandaramurthy ◽  
ChiaKwang Tan

Sign in / Sign up

Export Citation Format

Share Document