Cyber attack impact on critical Smart Grid infrastructures

Author(s):  
Kallisthenis I. Sgouras ◽  
Athina D. Birda ◽  
Dimitris P. Labridis
2014 ◽  
Vol 28 ◽  
pp. 575-582 ◽  
Author(s):  
Eric B. Rice ◽  
Anas AlMajali
Keyword(s):  

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 567 ◽  
Author(s):  
Chatura Seneviratne ◽  
Patikiri Arachchige Don Shehan Nilmantha Wijesekara ◽  
Henry Leung

Internet of Things (IoT) can significantly enhance various aspects of today’s electric power grid infrastructures for making reliable, efficient, and safe next-generation Smart Grids (SGs). However, harsh and complex power grid infrastructures and environments reduce the accuracy of the information propagating through IoT platforms. In particularly, information is corrupted due to the measurement errors, quantization errors, and transmission errors. This leads to major system failures and instabilities in power grids. Redundant information measurements and retransmissions are traditionally used to eliminate the errors in noisy communication networks. However, these techniques consume excessive resources such as energy and channel capacity and increase network latency. Therefore, we propose a novel statistical information fusion method not only for structural chain and tree-based sensor networks, but also for unstructured bidirectional graph noisy wireless sensor networks in SG environments. We evaluate the accuracy, energy savings, fusion complexity, and latency of the proposed method by comparing the said parameters with several distributed estimation algorithms using extensive simulations proposing it for several SG applications. Results prove that the overall performance of the proposed method outperforms other fusion techniques for all considered networks. Under Smart Grid communication environments, the proposed method guarantees for best performance in all fusion accuracy, complexity and energy consumption. Analytical upper bounds for the variance of the final aggregated value at the sink node for structured networks are also derived by considering all major errors.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 125806-125826 ◽  
Author(s):  
Mohammad Irshaad Oozeer ◽  
Simon Haykin

2020 ◽  
Author(s):  
Mohammad Irshaad Oozeer ◽  
Simon Haykin

The work presented in this chapter is an extension of our previous research of bringing together the Cognitive Dynamic System (CDS) and the Smart Grid (SG) by focusing on AC state estimation and Cyber-Attack detection. Under the AC power flow model, state estimation is complex and computationally expensive as it relies on iterative procedures. On the other hand, the False Data Injection (FDI) attacks are a new category of cyber-attacks targeting the SG that can bypass the current bad data detection techniques in the SG. Due to the complexity of the nonlinear system involved, the amount of published works on AC based FDI attacks have been fewer compared to their DC counterpart. Here, we will demonstrate how the entropic state, which is the objective function of the CDS, can be used as a metric to monitor the grid’s health and detect FDI attacks. The CDS, acting as the supervisor of the system, improves the entropic state on a cycle to cycle basis by dynamically optimizing the state estimation process through the reconfiguration of the weights of the sensors in the network. In order to showcase performance of this new structure, computer simulations are carried out on the IEEE 14-bus system for optimal state estimation and FDI attack detection.


Sign in / Sign up

Export Citation Format

Share Document