Optimal bidding for risk-averse hybrid power station producers in insular power systems: An MPEC approach

Author(s):  
Andreas V. Ntomaris ◽  
Anastasios G. Bakirtzis
Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 38 ◽  
Author(s):  
Bouzounierakis ◽  
Katsigiannis ◽  
Fiorentzis ◽  
Karapidakis

Greece has a large number of islands that are isolated from the main interconnected Greek power system; however, a majority of them are to be interconnected in the mainland grid over the next decade. A large number of these islands present a significant amount of wind and solar potential. The nature of load demand and renewable production is stochastic; thus, the operation of such isolated power systems can be improved significantly by the installation of a large-scale energy storage system. The role of storage is to compensate for the long and short-term imbalances between power generation and load demand. Pumped hydro storage (PHS) systems represent one of the most mature technologies for large-scale energy storage. However, their advantages have not been proven in practice for cases of medium and small-sized isolated insular systems. Regarding Greece, which contains a large number of isolated insular systems, a PHS system in the island of Ikaria started its test operation in 2019, whereas in Europe only one PHS system operates in El Hierro (Canary Islands). This paper studies the effect of installing a wind-PHS hybrid power station in the operation of the insular power system of Samos, Greece, according to the latest regulatory framework. The implemented analysis uses real hourly data for a whole year, and examines the effects of such an installation considering investors’ and power system operators’ viewpoints. More specifically, the economic viability of this project under different billing scenarios is compared, and its impact on the insular power system operation for various PHS sizes is examined.


2017 ◽  
Vol 32 (5) ◽  
pp. 3782-3793 ◽  
Author(s):  
Andreas V. Ntomaris ◽  
Anastasios G. Bakirtzis

Author(s):  
S. G. Obukhov ◽  
I. A. Plotnikov ◽  
V. G. Masolov

The paper presents the results of the comparative analysis of operation modes of an autonomous hybrid power complex with/without the energy store. We offere the technique which defines the power characteristics of the main components of a hybrid power complex: the consumers of the electric power, wind power and photo-electric installations (the last ones have been constructed). The paper establishes that, in order to compensate the seasonal fluctuations of power in autonomous power systems with renewable energy resources, the accumulative devices are required, with a capacity of tens of MWh including devices that are capable to provide energy storage with duration about half a year. This allows abandoning the storage devices for smoothing the seasonal fluctuations in the energy balance.The analysis of operation modes of energy stores has shown that for a stock and delivery of energy on time intervals, lasting several hours, the accumulative devices with rather high values of charging and digit power aren't required. It allows using the lead-acid rechargeable batteries of the deep category for smoothing the daily peaks of surplus and a capacity shortage. Moreover, the analysis of operation modes of energy stores as a part of the hybrid complexes has demonstrated that in charging/digit currents of the energy store the low-frequency and high-frequency pulsations of big amplitude caused by changes of size of output power of the renewable power installations and loading are inevitable. If low-frequency pulsations (the period of tens of minutes) can partially be damped due to the restriction of size of the maximum charging current of rechargeable batteries, then it is essentially impossible to eliminate high-frequency pulsations (the period of tens of seconds) in the power systems with the only store of energy. The paper finds out that the combined energy store having characteristics of the accumulator in the modes of receiving and delivery of power on daily time intervals, and at the same time having properties of the supercondenser in the modes of reception and return of impulses of power on second intervals of time is best suited to requirements of the autonomous power complexes with renewable energy resources.


2019 ◽  
Vol 8 (4) ◽  
pp. 9449-9456

This paper proposes the reliability index of wind-solar hybrid power plants using the expected energy not supplied method. The location of this research is wind-solar hybrid power plants Pantai Baru, Bantul, Special Region of Yogyakarta, Indonesia. The method to determine the reliability of the power plant is the expected energy not supplied (EENS) method. This analysis used hybrid plant operational data in 2018. The results of the analysis have been done on the Pantai Baru hybrid power plant about reliability for electric power systems with EENS. The results of this study can be concluded that based on the load duration curve, loads have a load more than the operating kW of the system that is 99 kW. In contrast, the total power contained in the Pantai Baru hybrid power plant is 90 kW. This fact makes the system forced to release the load. The reliability index of the power system in the initial conditions, it produces an EENS value in 2018, resulting in a total value of 2,512% or 449 kW. The EENS value still does not meet the standards set by the National Electricity Market (NEM), which is <0.002% per year. Based on this data, it can be said that the reliability of the New Coast hybrid power generation system in 2018 is in the unreliable category.


Author(s):  
Deepak Kumar Lal ◽  
Ajit Kumar Barisal

Background: Due to the increasing demand for the electrical power and limitations of conventional energy to produce electricity. Methods: Now the Microgrid (MG) system based on alternative energy sources are used to provide electrical energy to fulfill the increasing demand. The power system frequency deviates from its nominal value when the generation differs the load demand. The paper presents, Load Frequency Control (LFC) of a hybrid power structure consisting of a reheat turbine thermal unit, hydropower generation unit and Distributed Generation (DG) resources. Results: The execution of the proposed fractional order Fuzzy proportional-integral-derivative (FO Fuzzy PID) controller is explored by comparing the results with different types of controllers such as PID, fractional order PID (FOPID) and Fuzzy PID controllers. The controller parameters are optimized with a novel application of Grasshopper Optimization Algorithm (GOA). The robustness of the proposed FO Fuzzy PID controller towards different loading, Step Load Perturbations (SLP) and random step change of wind power is tested. Further, the study is extended to an AC microgrid integrated three region thermal power systems. Conclusion: The performed time domain simulations results demonstrate the effectiveness of the proposed FO Fuzzy PID controller and show that it has better performance than that of PID, FOPID and Fuzzy PID controllers. The suggested approach is reached out to the more practical multi-region power system. Thus, the worthiness and adequacy of the proposed technique are verified effectively.


2021 ◽  
Vol 39 ◽  
pp. 102567
Author(s):  
Yuqing Yang ◽  
Stephen Bremner ◽  
Chris Menictas ◽  
Merlinde Kay

2021 ◽  
Vol 47 ◽  
pp. 101429
Author(s):  
Ana Carolina de Lira Quaresma ◽  
Flávio S. Francisco ◽  
Fernando L.P. Pessoa ◽  
Eduardo M. Queiroz

Sign in / Sign up

Export Citation Format

Share Document