SVM-based direct thrust control of permanent magnet linear synchronous motor with reduced force ripple

Author(s):  
Ali Mohammadpour ◽  
Leila Parsa
2013 ◽  
Vol 416-417 ◽  
pp. 577-582
Author(s):  
Li Yi Li ◽  
He Zhu ◽  
Ming Na Ma ◽  
C.C. Chan

The thesis systematically researches electromagnetism and mechanical characteristic of primary segmented permanent magnet linear synchronous motor (PS-PMLSM), and discusses the varying rules of coupling flux linkage and inductance of each stator segment. The paper propose the space vector modulation direct thrust control (SVM-DTC) algorithm that based on thrust and flux observer, but also analyzes and builds adaptive slide mode observer (SMO), which adopts multi-segment estimate back-EMF combined method and phase locked loops (PLL) to estimate the position and speed of mover. Owing to the methods above, they are able to efficiently solve application problems in PS-PMLSM, which can't be settled through the conventional SVM-DTC and sensorless controlling method. Finally, the effectiveness of the algorithms is verified by simulation test.


2011 ◽  
Vol 47 (10) ◽  
pp. 4207-4210 ◽  
Author(s):  
Shi-Uk Chung ◽  
Ji-Won Kim ◽  
Byung-Chul Woo ◽  
Do-Kwan Hong ◽  
Ji-Young Lee ◽  
...  

2013 ◽  
Vol 416-417 ◽  
pp. 99-103
Author(s):  
Li Ren Huang ◽  
Ji Wei Dong ◽  
Qin Fen Lu ◽  
Yun Yue Ye ◽  
Yi Chen

The ropeless elevator driven by linear motor is expected to be a new solution to vertical transportation of skyscrapers and the deep underground mines. Due to high thrust force density, low force ripple and low cost etc., a double-sided permanent magnet linear synchronous motor (DPMLSM) with slotted iron core and multi-segment primary is proposed and designed. Based on the erected 2D finite element model, the structure is optimized in order to reduce the detent force. Moreover, the influence of manufacture error on force performance is also investigated. It is shown the proposed DPMLSM is suitable for the ropeless elevator.


Author(s):  
Shengchao Zhen ◽  
Panpan Chen ◽  
Xianmin Chen ◽  
Feifei Qin ◽  
Huixing Zhou

Sign in / Sign up

Export Citation Format

Share Document