Design of a pitch controller using disturbance accommodating control for wind turbines under stochastic environments

Author(s):  
Jongmin Cheon ◽  
Soonman Kwon ◽  
Youngkiu Choi
Energy ◽  
2018 ◽  
Vol 150 ◽  
pp. 310-319 ◽  
Author(s):  
Eduardo José Novaes Menezes ◽  
Alex Maurício Araújo ◽  
Janardan Singh Rohatgi ◽  
Pedro Manuel González del Foyo

Author(s):  
Na Wang ◽  
Alan D. Wright ◽  
Mark J. Balas

In this paper, solvability conditions for disturbance accommodating control (DAC) have been discussed and applied on wind turbine controller design in above-rated wind speed to regulate rotor speed and to mitigate turbine structural loads. An asymptotically stabilizing DAC controller with disturbance impact on the wind turbine being totally canceled out can be found if certain conditions are fulfilled. Designing a rotor speed regulation controller without steady-state error is important for applying linear control methodology such as DAC on wind turbines. Therefore, solvability conditions of DAC without steady-state error are attractive and can be taken as examples when designing a multitask turbine controller. DAC controllers solved via Moore–Penrose Pseudoinverse and the Kronecker product are discussed, and solvability conditions of using them are given. Additionally, a new solvability condition based on inverting the feed-through D term is proposed for the sake of reducing computational burden in the Kronecker product. Applications of designing collective pitch and independent pitch controllers based on DAC are presented. Recommendations of designing a DAC-based wind turbine controller are given. A DAC controller motivated by the proposed solvability condition that utilizes the inverse of feed-through D term is developed to mitigate the blade flapwise once-per-revolution bending moment together with a standard proportional integral controller in the control loop to assist rotor speed regulation. Simulation studies verify the discussed solvability conditions of DAC and show the effectiveness of the proposed DAC control design methodology.


2003 ◽  
Vol 125 (4) ◽  
pp. 379-385 ◽  
Author(s):  
Karl A. Stol ◽  
Mark J. Balas

Performance of a model-based periodic gain controller for wind turbines is presented using Disturbance Accommodating Control (DAC) techniques to estimate fluctuating wind disturbances. The control objective is to regulate rotor speed at above-rated wind speeds while mitigating cyclic blade root loads. Actuation is via individual blade pitch, and sensors are limited to rotor angle and speed. The modeled turbine is a two-bladed, downwind machine with simple blade and tower flexibility having four degrees of freedom. Comparisons are made to a time-invariant DAC controller and to a proportional-integral-derivative (PID) design. Simulations are performed using a fluctuating wind input and a nonlinear turbine model. Results indicate that the state-space control designs are effective in reducing blade loads without a sacrifice in speed regulation. The periodic controller shows the most potential because it uses a time-varying turbine model to estimate unmeasured states. The use of additional sensors to help reconstruct the blade flap rate can significantly improve the level of load attenuation, as witnessed in full-state feedback results.


2019 ◽  
Vol 2 (1) ◽  
pp. 8-16 ◽  
Author(s):  
P. A. Khlyupin ◽  
G. N. Ispulaeva

Introduction: The co-authors provide an overview of the main types of wind turbines and power generators installed into wind energy devices, as well as advanced technological solutions. The co-authors have identified the principal strengths and weaknesses of existing wind power generators, if applied as alternative energy sources. The co-authors have proven the need to develop an algorithm for the selection of a wind generator-based autonomous power supply system in the course of designing windmill farms in Russia. Methods: The co-authors have analyzed several types of wind turbines and power generators. Results and discussions: The algorithm for the selection of a wind generator-based autonomous power supply system is presented as a first approximation. Conclusion: The emerging algorithm enables designers to develop an effective wind generator-based autonomous power supply system.


2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi

Sign in / Sign up

Export Citation Format

Share Document