Machine Learning Price Prediction on Green Building Prices

Author(s):  
Syafiqah Jamil ◽  
Thuraiya Mohd ◽  
Suraya Masrom ◽  
Norbaya Ab Rahim
Author(s):  
Thuraiya Mohd ◽  
Syafiqah Jamil ◽  
Suraya Masrom

In the era of Industrial 4.0, many urgent issues in the industries can be effectively solved with artificial intelligence techniques, including machine learning. Designing an effective machine learning model for prediction and classification problems is an ongoing endeavor. Besides that, time and expertise are important factors that are needed to tailor the model to a specific issue, such as the green building housing issue. Green building is known as a potential approach to increase the efficiency of the building. To the best of our knowledge, there is still no implementation of machine learning model on GB valuation factors for building price prediction compared to conventional building development. This paper provides a report of an empirical study that model building price prediction based on green building and other common determinants. The experiments used five common machine learning algorithms namely Linear Regression, Decision Tree, Random Forest, Ridge and Lasso tested on a set of real building datasets that covered Kuala Lumpur District, Malaysia. The result showed that the Random Forest algorithm outperforms the other four algorithms on the tested dataset and the green building determinant has contributed some promising effects to the model.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2021 ◽  
Author(s):  
Sidra Mehtab ◽  
Jaydip Sen

Prediction of future movement of stock prices has been a subject matter of many research work. On one hand, we have proponents of the Efficient Market Hypothesis who claim that stock prices cannot be predicted, on the other hand, there are propositions illustrating that, if appropriately modelled, stock prices can be predicted with a high level of accuracy. There is also a gamut of literature on technical analysis of stock prices where the objective is to identify patterns in stock price movements and profit from it. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, over a period of four years: 2015 – 2018. Based on the NIFTY data during 2015 – 2018, we build various predictive models using machine learning approaches, and then use those models to predict the “Close” value of NIFTY 50 for the year 2019, with a forecast horizon of one week, i.e., five days. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual “Close” values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network (CNN) with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.


Sign in / Sign up

Export Citation Format

Share Document