scholarly journals Machine learning building price prediction with green building determinant

Author(s):  
Thuraiya Mohd ◽  
Syafiqah Jamil ◽  
Suraya Masrom

In the era of Industrial 4.0, many urgent issues in the industries can be effectively solved with artificial intelligence techniques, including machine learning. Designing an effective machine learning model for prediction and classification problems is an ongoing endeavor. Besides that, time and expertise are important factors that are needed to tailor the model to a specific issue, such as the green building housing issue. Green building is known as a potential approach to increase the efficiency of the building. To the best of our knowledge, there is still no implementation of machine learning model on GB valuation factors for building price prediction compared to conventional building development. This paper provides a report of an empirical study that model building price prediction based on green building and other common determinants. The experiments used five common machine learning algorithms namely Linear Regression, Decision Tree, Random Forest, Ridge and Lasso tested on a set of real building datasets that covered Kuala Lumpur District, Malaysia. The result showed that the Random Forest algorithm outperforms the other four algorithms on the tested dataset and the green building determinant has contributed some promising effects to the model.

2022 ◽  
Author(s):  
Joko Sampurno ◽  
Valentin Vallaeys ◽  
Randy Ardianto ◽  
Emmanuel Hanert

Abstract. Flood forecasting based on water level modeling is an essential non-structural measure against compound flooding over the globe. With its vulnerability increased under climate change, every coastal area became urgently needs a water level model for better flood risk management. Unfortunately, for local water management agencies in developing countries building such a model is challenging due to the limited computational resources and the scarcity of observational data. Here, we attempt to solve the issue by proposing an integrated hydrodynamic and machine learning approach to predict compound flooding in those areas. As a case study, this integrated approach is implemented in Pontianak, the densest coastal urban area over the Kapuas River delta, Indonesia. Firstly, we built a hydrodynamic model to simulate several compound flooding scenarios, and the outputs are then used to train the machine learning model. To obtain a robust machine learning model, we consider three machine learning algorithms, i.e., Random Forest, Multi Linear Regression, and Support Vector Machine. The results show that this integrated scheme is successfully working. The Random Forest performs as the most accurate algorithm to predict flooding hazards in the study area, with RMSE = 0.11 m compared to SVM (RMSE = 0.18 m) and MLR (RMSE = 0.19 m). The machine-learning model with the RF algorithm can predict ten out of seventeen compound flooding events during the testing phase. Therefore, the random forest is proposed as the most appropriate algorithm to build a reliable ML model capable of assessing the compound flood hazards in the area of interest.


Author(s):  
Jia Luo ◽  
Dongwen Yu ◽  
Zong Dai

It is not quite possible to use manual methods to process the huge amount of structured and semi-structured data. This study aims to solve the problem of processing huge data through machine learning algorithms. We collected the text data of the company’s public opinion through crawlers, and use Latent Dirichlet Allocation (LDA) algorithm to extract the keywords of the text, and uses fuzzy clustering to cluster the keywords to form different topics. The topic keywords will be used as a seed dictionary for new word discovery. In order to verify the efficiency of machine learning in new word discovery, algorithms based on association rules, N-Gram, PMI, andWord2vec were used for comparative testing of new word discovery. The experimental results show that the Word2vec algorithm based on machine learning model has the highest accuracy, recall and F-value indicators.


Author(s):  
George W Clark ◽  
Todd R Andel ◽  
J Todd McDonald ◽  
Tom Johnsten ◽  
Tom Thomas

Robotic systems are no longer simply built and designed to perform sequential repetitive tasks primarily in a static manufacturing environment. Systems such as autonomous vehicles make use of intricate machine learning algorithms to adapt their behavior to dynamic conditions in their operating environment. These machine learning algorithms provide an additional attack surface for an adversary to exploit in order to perform a cyberattack. Since an attack on robotic systems such as autonomous vehicles have the potential to cause great damage and harm to humans, it is essential that detection and defenses of these attacks be explored. This paper discusses the plausibility of direct and indirect cyberattacks on a machine learning model through the use of a virtual autonomous vehicle operating in a simulation environment using a machine learning model for control. Using this vehicle, this paper proposes various methods of detection of cyberattacks on its machine learning model and discusses possible defense mechanisms to prevent such attacks.


Author(s):  
R. Meenal ◽  
Prawin Angel Michael ◽  
D. Pamela ◽  
E. Rajasekaran

The complex numerical climate models pose a big challenge for scientists in weather predictions, especially for tropical system. This paper is focused on presenting the importance of weather prediction using machine learning (ML) technique. Recently many researchers recommended that the machine learning models can produce sensible weather predictions in spite of having no precise knowledge of atmospheric physics. In this work, global solar radiation (GSR) in MJ/m2/day and wind speed in m/s is predicted for Tamil Nadu, India using a random forest ML model. The random forest ML model is validated with measured wind and solar radiation data collected from IMD, Pune. The prediction results based on the random forest ML model are compared with statistical regression models and SVM ML model. Overall, random forest machine learning model has minimum error values of 0.750 MSE and R2 score of 0.97. Compared to regression models and SVM ML model, the prediction results of random forest ML model are more accurate. Thus, this study neglects the need for an expensive measuring instrument in all potential locations to acquire the solar radiation and wind speed data.


2020 ◽  
Author(s):  
Nicola Bodini ◽  
Mike Optis

Abstract. The extrapolation of wind speeds measured at a meteorological mast to wind turbine hub heights is a key component in a bankable wind farm energy assessment and a significant source of uncertainty. Industry-standard methods for extrapolation include the power law and logarithmic profile. The emergence of machine-learning applications in wind energy has led to several studies demonstrating substantial improvements in vertical extrapolation accuracy in machine-learning methods over these conventional power law and logarithmic profile methods. In all cases, these studies assess relative model performance at a measurement site where, critically, the machine-learning algorithm requires knowledge of the hub-height wind speeds in order to train the model. This prior knowledge provides fundamental advantages to the site-specific machine-learning model over the power law and log profile, which, by contrast, are not highly tuned to hub-height measurements but rather can generalize to any site. Furthermore, there is no practical benefit in applying a machine-learning model at a site where hub-height winds are known; rather, its performance at nearby locations (i.e., across a wind farm site) without hub-height measurements is of most practical interest. To more fairly and practically compare machine-learning-based extrapolation to standard approaches, we implemented a round-robin extrapolation model comparison, in which a random forest machine-learning model is trained and evaluated at different sites and then compared against the power law and logarithmic profile. We consider 20 months of lidar and sonic anemometer data collected at four sites between 50–100 kilometers apart in the central United States. We find that the random forest outperforms the standard extrapolation approaches, especially when incorporating surface measurements as inputs to include the influence of atmospheric stability. When compared at a single site (the traditional comparison approach), the machine-learning improvement in mean absolute error was 28 % and 23 % over the power law and logarithmic profile, respectively. Using the round-robin approach proposed here, this improvement drops to 19 % and 14 %, respectively. These latter values better represent practical model performance, and we conclude that round-robin validation should be the standard for machine-learning-based, wind-speed extrapolation methods.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012243
Author(s):  
A Varun ◽  
Mechiri Sandeep Kumar ◽  
Karthik Murumulla ◽  
Tatiparthi Sathvik

Abstract Lathe turning is one of the manufacturing sector’s most basic and important operations. From small businesses to large corporations, optimising machining operations is a key priority. Cooling systems in machining have an important role in determining surface roughness. The machine learning model under discussion assesses the surface roughness of lathe turned surfaces for a variety of materials. To forecast surface roughness, the machine learning model is trained using machining parameters, material characteristics, tool properties, and cooling conditions such as dry, MQL, and hybrid nano particle mixed MQL. Mixing with appropriate nano particles such as copper, aluminium, etc. may significantly improve cooling system heat absorption. To create a data collection for training and testing the model, many standard journals and publications are used. Surface roughness varies with work parameter combinations. In MATLAB, a Gaussian Process Regression (GPR) method will be utilised to construct a model and predict surface roughness. To improve prediction outcomes and make the model more flexible, data from a variety of publications was included. Some characteristics were omitted in order to minimise data noise. Different statistical factors will be explored to predict surface roughness.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Max Schneckenburger ◽  
Sven Höfler ◽  
Luis Garcia ◽  
Rui Almeida ◽  
Rainer Börret

Abstract Robot polishing is increasingly being used in the production of high-end glass workpieces such as astronomy mirrors, lithography lenses, laser gyroscopes or high-precision coordinate measuring machines. The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. Whilst the trend towards sub nanometre level surfaces finishes and features progresses, matching both form and finish coherently in complex parts remains a major challenge. With increasing optic sizes, the stability of the polishing process becomes more and more important. If not empirically known, the optical surface must be measured after each polishing step. One approach is to mount sensors on the polishing head in order to measure process-relevant quantities. On the basis of these data, machine learning algorithms can be applied for surface value prediction. Due to the modification of the polishing head by the installation of sensors and the resulting process influences, the first machine learning model could only make removal predictions with insufficient accuracy. The aim of this work is to show a polishing head optimised for the sensors, which is coupled with a machine learning model in order to predict the material removal and failure of the polishing head during robot polishing. The artificial neural network is developed in the Python programming language using the Keras deep learning library. It starts with a simple network architecture and common training parameters. The model will then be optimised step-by-step using different methods and optimised in different steps. The data collected by a design of experiments with the sensor-integrated glass polishing head are used to train the machine learning model and to validate the results. The neural network achieves a prediction accuracy of the material removal of 99.22%. Article highlights First machine learning model application for robot polishing of optical glass ceramics The polishing process is influenced by a large number of different process parameters. Machine learning can be used to adjust any process parameter and predict the change in material removal with a certain probability. For a trained model,empirical experiments are no longer necessary Equipping a polishing head with sensors, which provides the possibility for 100% control


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin Emil Dumitrescu

Abstract Engine calibration requires detailed feedback information that can reflect the combustion process as the optimized objective. Indicated mean effective pressure (IMEP) is such an indicator describing an engine’s capacity to do work under different combinations of control variables. In this context, it is of interest to find cost-effective solutions that will reduce the number of experimental tests. This paper proposes a random forest machine learning model as a cost-effective tool for optimizing engine performance. Specifically, the model estimated IMEP for a natural gas spark ignited engine obtained from a converted diesel engine. The goal was to develop an economical and robust tool that can help reduce the large number of experiments usually required throughout the design and development of internal combustion engines. The data used for building such correlative model came from engine experiments that varied the spark advance, fuel-air ratio, and engine speed. The inlet conditions and the coolant/oil temperature were maintained constant. As a result, the model inputs were the key engine operation variables that affect engine performance. The trained model was shown to be able to predict the combustion-related feedback information with good accuracy (R2 ≈ 0.9 and MSE ≈ 0). In addition, the model accurately reproduced the effect of control variables on IMEP, which would help narrow the choice of operating conditions for future designs of experiment. Overall, the machine learning approach presented here can provide new chances for cost-efficient engine analysis and diagnostics work.


Sign in / Sign up

Export Citation Format

Share Document