An Improved Differential Box-Counting Approach to Compute Fractal Dimension of Gray-Level Image

Author(s):  
Songtao Liu
2009 ◽  
Vol 624 ◽  
pp. 389-411 ◽  
Author(s):  
FAZLUL R. ZUBAIR ◽  
HARIS J. CATRAKIS

This work explores fractal geometrical properties of scalar turbulent interfaces derived from experimental two-dimensional spatial images of the scalar field in separated shear layers at large Reynolds numbers. The resolution of the data captures the upper three decades of scales enabling examination of multiscale geometrical properties ranging from the largest energy-containing scales to inertial scales. The data show a −5/3 spectral exponent over a wide range of scales corresponding to the inertial range in fully developed turbulent flows. For the fractal aspects, we utilize two methods as it is known that different methods may lead to different fractal aspects. We use the recently developed method for fractal analysis known as the Multiscale-Minima Meshless (M3) method because it does not require the use of grids. We also use the conventional box-counting approach as it has been frequently employed in various past studies. The outer scalar interfaces are identified on the basis of the probability density function (p.d.f.) of the scalar field. For the outer interfaces, the M3 method shows strong scale dependence of the generalized fractal dimension with approximately linear variation of the dimension as a function of logarithmic scale, for interface-fitting reference areas, but there is evidence of a plateau near a dimension D ~ 1.3 for larger reference areas. The conventional box-counting approach shows evidence of a plateau with a constant dimension also of D ~ 1.3, for the same reference areas. In both methods, the observed plateau dimension value agrees with other studies in different flow geometries. Scalar threshold effects are also examined and show that the internal scalar interfaces exhibit qualitatively similar behaviour to the outer interfaces. The overall range of box-counting fractal dimension values exhibited by outer and internal interfaces is D ~ 1.2–1.4. The present findings show that the fractal aspects of scalar interfaces in separated shear layers at large Reynolds number with −5/3 spectral behaviour can depend on the method used for evaluating the dimension and on the reference area. These findings as well as the utilities and distinctions of these two different definitions of the dimension are discussed in the context of multiscale modelling of mixing and the interfacial geometry.


2010 ◽  
Vol 20 (12) ◽  
pp. 4067-4077 ◽  
Author(s):  
PANAGIOTIS D. ALEVIZOS ◽  
MICHAEL N. VRAHATIS

An optimal box-counting algorithm for estimating the fractal dimension of a nonempty set which changes over time is given. This nonstationary environment is characterized by the insertion of new points into the set and in many cases the deletion of some existing points from the set. In this setting, the issue at hand is to update the box-counting result at appropriate time intervals with low computational cost. The proposed algorithm tackles the dynamic box-counting problem by using computational geometry methods. In particular, we use a sequence of compressed Box Quadtrees to store the data points. This storage permits the fast and efficient application of our box-counting approach to compute what we call the "dynamic fractal dimension". For a nonempty set of points in the d-dimensional space ℝd (for constant d ≥ 1), the time complexity of the proposed algorithm is shown to be O(n log n) while the space complexity is O(n), where n is the number of considered points. In addition, we show that the time complexity of an insertion, or a deletion is O( log n), and that the above time and space complexity is optimal. Experimental results of the proposed approach illustrated on the well-known and widely studied Hénon map are presented.


2010 ◽  
Vol 30 (8) ◽  
pp. 2070-2072
Author(s):  
Le-shan ZHANG ◽  
Ge CHEN ◽  
Yong HAN ◽  
Tao ZHANG

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 46
Author(s):  
Pedram Nasr ◽  
Hannah Leung ◽  
France-Isabelle Auzanneau ◽  
Michael A. Rogers

Complex morphologies, as is the case in self-assembled fibrillar networks (SAFiNs) of 1,3:2,4-Dibenzylidene sorbitol (DBS), are often characterized by their Fractal dimension and not Euclidean. Self-similarity presents for DBS-polyethylene glycol (PEG) SAFiNs in the Cayley Tree branching pattern, similar box-counting fractal dimensions across length scales, and fractals derived from the Avrami model. Irrespective of the crystallization temperature, fractal values corresponded to limited diffusion aggregation and not ballistic particle–cluster aggregation. Additionally, the fractal dimension of the SAFiN was affected more by changes in solvent viscosity (e.g., PEG200 compared to PEG600) than crystallization temperature. Most surprising was the evidence of Cayley branching not only for the radial fibers within the spherulitic but also on the fiber surfaces.


2012 ◽  
Vol 588-589 ◽  
pp. 1930-1933
Author(s):  
Guo Song Han ◽  
Hai Yan Yang ◽  
Xin Pei Jiang

Based on industrial CT technique, Meso-mechanical experiment was conducted on construction waste recycled brick to get the real-time CT image and stress-strain curve of brick during the loading process. Box counting method was used to calculate the fractal dimension of the inner pore transfixion and crack evolution. The results showed that lots of pore in the interfacial transition zone mainly resulted in the damage of the brick. With the increase of stress, the opening through-pore appeared and crack expanded, and the fractal dimension increased.


Sign in / Sign up

Export Citation Format

Share Document