On separated shear layers and the fractal geometry of turbulent scalar interfaces at large Reynolds numbers

2009 ◽  
Vol 624 ◽  
pp. 389-411 ◽  
Author(s):  
FAZLUL R. ZUBAIR ◽  
HARIS J. CATRAKIS

This work explores fractal geometrical properties of scalar turbulent interfaces derived from experimental two-dimensional spatial images of the scalar field in separated shear layers at large Reynolds numbers. The resolution of the data captures the upper three decades of scales enabling examination of multiscale geometrical properties ranging from the largest energy-containing scales to inertial scales. The data show a −5/3 spectral exponent over a wide range of scales corresponding to the inertial range in fully developed turbulent flows. For the fractal aspects, we utilize two methods as it is known that different methods may lead to different fractal aspects. We use the recently developed method for fractal analysis known as the Multiscale-Minima Meshless (M3) method because it does not require the use of grids. We also use the conventional box-counting approach as it has been frequently employed in various past studies. The outer scalar interfaces are identified on the basis of the probability density function (p.d.f.) of the scalar field. For the outer interfaces, the M3 method shows strong scale dependence of the generalized fractal dimension with approximately linear variation of the dimension as a function of logarithmic scale, for interface-fitting reference areas, but there is evidence of a plateau near a dimension D ~ 1.3 for larger reference areas. The conventional box-counting approach shows evidence of a plateau with a constant dimension also of D ~ 1.3, for the same reference areas. In both methods, the observed plateau dimension value agrees with other studies in different flow geometries. Scalar threshold effects are also examined and show that the internal scalar interfaces exhibit qualitatively similar behaviour to the outer interfaces. The overall range of box-counting fractal dimension values exhibited by outer and internal interfaces is D ~ 1.2–1.4. The present findings show that the fractal aspects of scalar interfaces in separated shear layers at large Reynolds number with −5/3 spectral behaviour can depend on the method used for evaluating the dimension and on the reference area. These findings as well as the utilities and distinctions of these two different definitions of the dimension are discussed in the context of multiscale modelling of mixing and the interfacial geometry.

Fractals ◽  
1994 ◽  
Vol 02 (03) ◽  
pp. 437-440 ◽  
Author(s):  
WILLIAM A. JOHNSEN ◽  
CHRISTOPHER A. BROWN

The objective of this work is to compare fractal-based, topographic characterization parameters calculated by several different fractal analysis methods. Four fractal characterization methods (compass, patchwork, box counting, and 2-point correlation) are systematically applied to five topographic data sets, which encompass a wide range of scale, and the results are compared. The compass and patchwork methods calculate similar values for the fractal dimension and smooth/rough crossover. The box and 2-point correlation methods calculate similar values for the fractal dimension. The compass and patchwork methods are capable of calculating the smooth/rough crossover.


2010 ◽  
Vol 20 (12) ◽  
pp. 4067-4077 ◽  
Author(s):  
PANAGIOTIS D. ALEVIZOS ◽  
MICHAEL N. VRAHATIS

An optimal box-counting algorithm for estimating the fractal dimension of a nonempty set which changes over time is given. This nonstationary environment is characterized by the insertion of new points into the set and in many cases the deletion of some existing points from the set. In this setting, the issue at hand is to update the box-counting result at appropriate time intervals with low computational cost. The proposed algorithm tackles the dynamic box-counting problem by using computational geometry methods. In particular, we use a sequence of compressed Box Quadtrees to store the data points. This storage permits the fast and efficient application of our box-counting approach to compute what we call the "dynamic fractal dimension". For a nonempty set of points in the d-dimensional space ℝd (for constant d ≥ 1), the time complexity of the proposed algorithm is shown to be O(n log n) while the space complexity is O(n), where n is the number of considered points. In addition, we show that the time complexity of an insertion, or a deletion is O( log n), and that the above time and space complexity is optimal. Experimental results of the proposed approach illustrated on the well-known and widely studied Hénon map are presented.


2021 ◽  
Vol 118 (45) ◽  
pp. e2102350118
Author(s):  
George H. Choueiri ◽  
Jose M. Lopez ◽  
Atul Varshney ◽  
Sarath Sankar ◽  
Björn Hof

Turbulence generally arises in shear flows if velocities and hence, inertial forces are sufficiently large. In striking contrast, viscoelastic fluids can exhibit disordered motion even at vanishing inertia. Intermediate between these cases, a state of chaotic motion, “elastoinertial turbulence” (EIT), has been observed in a narrow Reynolds number interval. We here determine the origin of EIT in experiments and show that characteristic EIT structures can be detected across an unexpectedly wide range of parameters. Close to onset, a pattern of chevron-shaped streaks emerges in qualitative agreement with linear and weakly nonlinear theory. However, in experiments, the dynamics remain weakly chaotic, and the instability can be traced to far lower Reynolds numbers than permitted by theory. For increasing inertia, the flow undergoes a transformation to a wall mode composed of inclined near-wall streaks and shear layers. This mode persists to what is known as the “maximum drag reduction limit,” and overall EIT is found to dominate viscoelastic flows across more than three orders of magnitude in Reynolds number.


2010 ◽  
Vol 30 (8) ◽  
pp. 2070-2072
Author(s):  
Le-shan ZHANG ◽  
Ge CHEN ◽  
Yong HAN ◽  
Tao ZHANG

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 46
Author(s):  
Pedram Nasr ◽  
Hannah Leung ◽  
France-Isabelle Auzanneau ◽  
Michael A. Rogers

Complex morphologies, as is the case in self-assembled fibrillar networks (SAFiNs) of 1,3:2,4-Dibenzylidene sorbitol (DBS), are often characterized by their Fractal dimension and not Euclidean. Self-similarity presents for DBS-polyethylene glycol (PEG) SAFiNs in the Cayley Tree branching pattern, similar box-counting fractal dimensions across length scales, and fractals derived from the Avrami model. Irrespective of the crystallization temperature, fractal values corresponded to limited diffusion aggregation and not ballistic particle–cluster aggregation. Additionally, the fractal dimension of the SAFiN was affected more by changes in solvent viscosity (e.g., PEG200 compared to PEG600) than crystallization temperature. Most surprising was the evidence of Cayley branching not only for the radial fibers within the spherulitic but also on the fiber surfaces.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 263
Author(s):  
Tianlong Zhang ◽  
Yigang Shen ◽  
Ryota Kiya ◽  
Dian Anggraini ◽  
Tao Tang ◽  
...  

Continuous microfluidic focusing of particles, both synthetic and biological, is significant for a wide range of applications in industry, biology and biomedicine. In this study, we demonstrate the focusing of particles in a microchannel embedded with glass grooves engraved by femtosecond pulse (fs) laser. Results showed that the laser-engraved microstructures were capable of directing polystyrene particles and mouse myoblast cells (C2C12) towards the center of the microchannel at low Reynolds numbers (Re < 1). Numerical simulation revealed that localized side-to-center secondary flows induced by grooves at the channel bottom play an essential role in particle lateral displacement. Additionally, the focusing performance proved to be dependent on the angle of grooves and the middle open space between the grooves based on both experiments and simulation. Particle sedimentation rate was found to critically influence the focusing of particles of different sizes. Taking advantage of the size-dependent particle lateral displacement, selective focusing of micrometer particles was demonstrated. This study systematically investigated continuous particle focusing in a groove-embedded microchannel. We expect that this device will be used for further applications, such as cell sensing and nanoparticle separation in biological and biomedical areas.


Sign in / Sign up

Export Citation Format

Share Document