Impacts of Inertial Sensor Errors on both Data Fusion and Attitude-Based Bicycle Rider Assistance Systems in order to derive Sensor Requirements

Author(s):  
Dauer Felix ◽  
Daniel Gorges ◽  
Andreas Wienss
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xixiang Liu ◽  
Xiaosu Xu ◽  
Yiting Liu ◽  
Lihui Wang

Two viewpoints are given: (1) initial alignment of strapdown inertial navigation system (SINS) can be fulfilled with a set of inertial sensor data; (2) estimation time for sensor errors can be shortened by repeated data fusion on the added backward-forward SINS resolution results and the external reference data. Based on the above viewpoints, aiming to estimate gyro bias in a shortened time, a rapid transfer alignment method, without any changes for Kalman filter, is introduced. In this method, inertial sensor data and reference data in one reference data update cycle are stored, and one backward and one forward SINS resolutions are executed. Meanwhile, data fusion is executed when the corresponding resolution ends. With the added backward-forward SINS resolution, in the above mentioned update cycle, the estimating operations for gyro bias are added twice, and the estimation time for it is shortened. In the ship swinging condition, with the “velocity plus yaw” matching, the effectiveness of this method is proved by the simulation.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2480
Author(s):  
Isidoro Ruiz-García ◽  
Ismael Navarro-Marchal ◽  
Javier Ocaña-Wilhelmi ◽  
Alberto J. Palma ◽  
Pablo J. Gómez-López ◽  
...  

In skiing it is important to know how the skier accelerates and inclines the skis during the turn to avoid injuries and improve technique. The purpose of this pilot study with three participants was to develop and evaluate a compact, wireless, and low-cost system for detecting the inclination and acceleration of skis in the field based on inertial measurement units (IMU). To that end, a commercial IMU board was placed on each ski behind the skier boot. With the use of an attitude and heading reference system algorithm included in the sensor board, the orientation and attitude data of the skis were obtained (roll, pitch, and yaw) by IMU sensor data fusion. Results demonstrate that the proposed IMU-based system can provide reliable low-drifted data up to 11 min of continuous usage in the worst case. Inertial angle data from the IMU-based system were compared with the data collected by a video-based 3D-kinematic reference system to evaluate its operation in terms of data correlation and system performance. Correlation coefficients between 0.889 (roll) and 0.991 (yaw) were obtained. Mean biases from −1.13° (roll) to 0.44° (yaw) and 95% limits of agreements from 2.87° (yaw) to 6.27° (roll) were calculated for the 1-min trials. Although low mean biases were achieved, some limitations arose in the system precision for pitch and roll estimations that could be due to the low sampling rate allowed by the sensor data fusion algorithm and the initial zeroing of the gyroscope.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 82 ◽  
Author(s):  
Udeni Jayasinghe ◽  
William S. Harwin ◽  
Faustina Hwang

Inertial sensors are a useful instrument for long term monitoring in healthcare. In many cases, inertial sensor devices can be worn as an accessory or integrated into smart textiles. In some situations, it may be beneficial to have data from multiple inertial sensors, rather than relying on a single worn sensor, since this may increase the accuracy of the analysis and better tolerate sensor errors. Integrating multiple sensors into clothing improves the feasibility and practicality of wearing multiple devices every day, in approximately the same location, with less likelihood of incorrect sensor orientation. To facilitate this, the current work investigates the consequences of attaching lightweight sensors to loose clothes. The intention of this paper is to discuss how data from these clothing sensors compare with similarly placed body worn sensors, with additional consideration of the resulting effects on activity recognition. This study compares the similarity between the two signals (body worn and clothing), collected from three different clothing types (slacks, pencil skirt and loose frock), across multiple daily activities (walking, running, sitting, and riding a bus) by calculating correlation coefficients for each sensor pair. Even though the two data streams are clearly different from each other, the results indicate that there is good potential of achieving high classification accuracy when using inertial sensors in clothing.


Author(s):  
Michael Darms ◽  
Florian Foelster ◽  
Jochen Schmidt ◽  
Dominik Froehlich ◽  
Alfred Eckert

Navigation ◽  
2019 ◽  
Vol 66 (1) ◽  
pp. 251-263 ◽  
Author(s):  
Juan Jurado ◽  
Christine M. Schubert Kabban ◽  
John Raquet

Sign in / Sign up

Export Citation Format

Share Document