Compressing CNNs by Exponent Sharing in Weights using IEEE Single Precision Format

Author(s):  
Prachi Kashikar ◽  
Sharad Sinha
Keyword(s):  
2018 ◽  
Author(s):  
Pavel Pokhilko ◽  
Evgeny Epifanovsky ◽  
Anna I. Krylov

Using single precision floating point representation reduces the size of data and computation time by a factor of two relative to double precision conventionally used in electronic structure programs. For large-scale calculations, such as those encountered in many-body theories, reduced memory footprint alleviates memory and input/output bottlenecks. Reduced size of data can lead to additional gains due to improved parallel performance on CPUs and various accelerators. However, using single precision can potentially reduce the accuracy of computed observables. Here we report an implementation of coupled-cluster and equation-of-motion coupled-cluster methods with single and double excitations in single precision. We consider both standard implementation and one using Cholesky decomposition or resolution-of-the-identity of electron-repulsion integrals. Numerical tests illustrate that when single precision is used in correlated calculations, the loss of accuracy is insignificant and pure single-precision implementation can be used for computing energies, analytic gradients, excited states, and molecular properties. In addition to pure single-precision calculations, our implementation allows one to follow a single-precision calculation by clean-up iterations, fully recovering double-precision results while retaining significant savings.


Algorithmica ◽  
1997 ◽  
Vol 17 (2) ◽  
pp. 111-132 ◽  
Author(s):  
F. Avnaim ◽  
J. -D. Boissonnat ◽  
O. Devillers ◽  
F. P. Preparata ◽  
M. Yvinec
Keyword(s):  

1970 ◽  
Vol 60 (2) ◽  
pp. 321-344 ◽  
Author(s):  
Fred Schwab ◽  
Leon Knopoff

abstract Fundamental-mode Love- and Rayleigh-wave dispersion computations for multilayered, perfectly-elastic media were studied. The speed of these computations was improved, and the accuracy brought under full control. With sixteen decimal digits employed in these computations, fifteen significant-figure accuracy was found possible with Love waves and twelve to thirteen figure accuracy with Rayleigh waves. In order to ensure that the computed dispersion is correct to a specified accuracy, say σ significant figures, (σ + 1)/4 wavelengths of layered structure must be retained above a homogeneous half-space. To this accuracy, the homogeneous half-space is a sufficient model of the true layering it replaces. Using this result, it was possible to refine the usual layer-reduction technique so as to ensure retention of the specified accuracy while employing reduction. With this reduction technique in effect, and with σ specified below single-precision accuracy, the program can be run entirely in single precision; the specified accuracy is maintained without overflow or loss-of-precision problems being encountered during calculations.


2020 ◽  
Author(s):  
Alessandro Cotronei ◽  
Thomas Slawig

Abstract. We converted the radiation part of the atmospheric model ECHAM to single precision arithmetic. We analyzed different conversion strategies and finally used a step by step change of all modules, subroutines and functions. We found out that a small code portion still requires higher precision arithmetic. We generated code that can be easily changed from double to single precision and vice versa, basically using a simple switch in one module. We compared the output of the single precision version in the coarse resolution with observational data and with the original double precision code. The results of both versions are comparable. We extensively tested different parallelization options with respect to the possible performance gain, in both coarse and low resolution. The single precision radiation itself was accelerated by about 40%, whereas the speed-up for the whole ECHAM model using the converted radiation achieved 18% in the best configuration. We further measured the energy consumption, which could also be reduced.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2990-2993

Duplication of the coasting element numbers is the big activity in automated signal handling. So the exhibition of drifting problem multipliers count on a primary undertaking in any computerized plan. Coasting factor numbers are spoken to utilizing IEEE 754 modern day in single precision(32-bits), Double precision(sixty four-bits) and Quadruple precision(128-bits) organizations. Augmentation of those coasting component numbers can be completed via using Vedic generation. Vedic arithmetic encompass sixteen wonderful calculations or Sutras. Urdhva Triyagbhyam Sutra is most usually applied for growth of twofold numbers. This paper indicates the compare of tough work finished via exceptional specialists in the direction of the plan of IEEE 754 ultra-modern-day unmarried accuracy skimming thing multiplier the usage of Vedic technological statistics.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Anitha Juliette Albert ◽  
Seshasayanan Ramachandran

Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.


Sign in / Sign up

Export Citation Format

Share Document