A Fully Reconfigurable Software-Defined Radio Transceiver in 0.13μm CMOS

Author(s):  
J. Craninckx ◽  
M. Ingels ◽  
A. Baschirotto ◽  
J. van Driessche ◽  
L. van der Perre ◽  
...  
2010 ◽  
Vol 8 ◽  
pp. 67-73 ◽  
Author(s):  
M. D. Blech ◽  
A. T. Ott ◽  
P. Neumeier ◽  
M. Möller ◽  
T. F. Eibert

Abstract. An ultra-wideband (UWB) software defined radio (SDR) implementation is presented. The developed impulse radio (IR) transceiver employs first order bandpass (BP) sampling at a conversion frequency which is four times the channel bandwidth. The subsampling architecture directly provides the RF signal avoiding any non-ideal mixer stages and reduces the requirements of digital signal processing implemented in a field programmable gate array (FPGA). The transmitter consists basically of a multi-Nyquist digital to analog converter (DAC), whereas the implemented matched filter (MF) receiver prototype employs a standard digitizing oscilloscope. This design can be adaptively reconfigured in terms of modulation, data rate, and channel equalization. The reconfigurable design is used for an extensive performance analysis of the quadrature phase shift keying (QPSK) modulation scheme investigating the influence of different antennas, amplifiers, narrowband interferers as well as different equalizer lengths. Even for distances up to 7 m in a multipath environment robust communication was achieved.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3085 ◽  
Author(s):  
Sandra Costanzo

Non-contact wireless sensing approaches have emerged in recent years, in order to enable novel enhanced developments in the framework of healthcare and biomedical scenarios. One of these technologically advanced solutions is given by software-defined radar platforms, a low-cost radar implementation, where all operations are implemented and easily changed via software. In the present paper, a software-defined radar implementation with Doppler elaboration features is presented, to be applied for the non-contact monitoring of human respiration signals. A quadrature receiver I/Q (In-phase/Quadrature) architecture is adopted in order to overcome the critical issues related to the occurrences of null detection points, while the phase-locked loop components included in the software defined radio transceiver are successfully exploited to guarantee the phase correlation between I/Q signal components. The proposed approach leads to a compact, low-cost, and flexible radar solution, whose application abilities may be simply changed via software, with no need for hardware modifications. Experimental results on a human target are discussed so as to demonstrate the feasibility of the proposed approach for vital signs detection.


2015 ◽  
Vol 22 (6) ◽  
pp. 12-14 ◽  
Author(s):  
Ray Yeuh-Min Huang ◽  
Victor C. M. Leung ◽  
Chin-Feng Lai ◽  
Subhas Mukhopadhyay ◽  
Roy X. Lai

2021 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Wouter Huygen ◽  
Junzi Sun ◽  
Jacco Hoekstra

Automatic Dependent Surveillance-Broadcast (ADS-B) enables aircraft to periodically broadcast their flight states such as position and velocity. Compared to classical radar surveillance, it increases update rate and accuracy. Currently, Mode S Extended Squitter is the most common implementation for ADS-B. Due to the simplicity of Mode S design, ADS-B signals are prone to injections. This study proposes a cost-effective solution that verifies the integrity of ADS-B signals using coherent receivers. We design the verification approach by combining the signal’s direction of arrival, estimated from the multi-channel data, with the target bearing calculated from ADS-B messages. By using another high-performance software-defined radio transceiver, we also conduct real signal injection experiments to validate our approaches.


Sign in / Sign up

Export Citation Format

Share Document