Test Bed for a Smart Millimetre Wave Radar Sensor

Author(s):  
G. Brooker ◽  
N. McCouat
Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6202
Author(s):  
Eugin Hyun ◽  
Young-Seok Jin ◽  
Jae-Hyun Park ◽  
Jong-Ryul Yang

In this paper, we propose a Doppler spectrum-based passenger detection scheme for a CW (Continuous Wave) radar sensor in vehicle applications. First, we design two new features, referred to as an ‘extended degree of scattering points’ and a ‘different degree of scattering points’ to represent the characteristics of the non-rigid motion of a moving human in a vehicle. We also design one newly defined feature referred to as the ‘presence of vital signs’, which is related to extracting the Doppler frequency of chest movements due to breathing. Additionally, we use a BDT (Binary Decision Tree) for machine learning during the training and test steps with these three extracted features. We used a 2.45 GHz CW radar front-end module with a single receive antenna and a real-time data acquisition module. Moreover, we built a test-bed with a structure similar to that of an actual vehicle interior. With the test-bed, we measured radar signals in various scenarios. We then repeatedly assessed the classification accuracy and classification error rate using the proposed algorithm with the BDT. We found an average classification accuracy rate of 98.6% for a human with or without motion.


2020 ◽  
Vol 56 (20) ◽  
pp. 1077-1079
Author(s):  
J. Kim ◽  
J.-E. Lee ◽  
H.-S. Lim ◽  
S. Lee

Author(s):  
Hong Nhung Nguyen ◽  
Seongwook Lee ◽  
Tien‐Tung Nguyen ◽  
Yong‐Hwa Kim

2021 ◽  
Vol 5 (3) ◽  
pp. 1-4
Author(s):  
Dominik Meier ◽  
Christian Zech ◽  
Benjamin Baumann ◽  
Bersant Gashi ◽  
Matthias Malzacher ◽  
...  

Author(s):  
Christian Schoffmann ◽  
Barnaba Ubezio ◽  
Christoph Boehm ◽  
Stephan Muhlbacher-Karrer ◽  
Hubert Zangl

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5228
Author(s):  
Jin-Cheol Kim ◽  
Hwi-Gu Jeong ◽  
Seongwook Lee

In this study, we propose a method to identify the type of target and simultaneously determine its moving direction in a millimeter-wave radar system. First, using a frequency-modulated continuous wave (FMCW) radar sensor with the center frequency of 62 GHz, radar sensor data for a pedestrian, a cyclist, and a car are obtained in the test field. Then, a You Only Look Once (YOLO)-based network is trained with the sensor data to perform simultaneous target classification and moving direction estimation. To generate input data suitable for the deep learning-based classifier, a method of converting the radar detection result into an image form is also proposed. With the proposed method, we can identify the type of each target and its direction of movement with an accuracy of over 95%. Moreover, the pre-trained classifier shows an identification accuracy of 85% even for newly acquired data that have not been used for training.


Sign in / Sign up

Export Citation Format

Share Document