Implementation of direct torque control of induction machine utilising TMS320C31 digital signal processor

Author(s):  
A.H.M. Yatim ◽  
N.R.N. Idris
2017 ◽  
Vol 20 (2) ◽  
pp. 76
Author(s):  
S. Boukadida ◽  
S. Gdaim ◽  
A. Mtibaa

In this paper, a new design method of Direct Torque Control using Space Vector Modulation (DTC-SVM) of an Induction Machine (IM), which is based on Fault Tolerant Control (FTC) is proposed. Due to its complexity, the FTC implemented on a microcontroller and a Digital Signal Processor (DSP) is characterized by a calculating delay. To solve this problem, an alternative digital solution is used, based on the Field Programmable Gate Array (FPGA), which is characterized by a fast processing speed. However, as an FPGAs increase in size, there is a need for improved productivity, and this includes new design flows and tools. Xilinx System Generator (XSG) is a high-level block-based design tool that offers bit and cycle accurate simulation. This tool can automatically generate the Very High-Density Logic (VHDL) code without resorting to a tough programming, without being obliged to do approximations and more we can visualize the behavior of the machine before implementation which is very important for not damage our machine. Simulation and experimental results using Hardware In the Loop (HIL) of the FTC based DTC-SVM is compared with those of the conventional DTC. The comparison results illustrate the reduction in the torque and stator flux ripples. Our purpose is to reveal our algorithm efficiency and to show the Xilinx Virtex V FPGA performances in terms of execution time. 


Author(s):  
Saber Krim ◽  
Soufien Gdaim ◽  
Abdellatif Mtibaa ◽  
Mohamed Faouzi Mimouni

<p>This paper proposes a digital implementation of the direct torque control (DTC) of an Induction Motor (IM) with an observation strategy on the Field Programmable Gate Array (FPGA). The hardware solution based on the FPGA is caracterised by fast processing speed due to the parallel processing. In this study the FPGA is used to overcome the limitation of the software solutions (Digital Signal Processor (DSP) and Microcontroller). Also, the DTC of IM has many drawbacks such as for example; The open loop pure integration has from the problems of integration especially at the low speed and the variation of the stator resistance due to the temperature. To tackle these problems we use the Sliding Mode Observer (SMO). This observer is used estimate the stator flux, the stator current and the stator resistance. The hardware implementation method is based on Xilinx System Generator (XSG) which a modeling tool developed by Xilinx for the design of implemented systems on FPGA; from the design of the DTC with SMO from XSG we can automatically generate the VHDL code. The model of the DTC with SMO has been designed and simulated using XSG blocks, synthesized with Xilinx ISE 12.4 tool and implemented on Xilinx Virtex-V FPGA.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rafael Rodríguez-Ponce ◽  
Francisco Gustavo Mota-Muñoz

Robot technology has become an integral part of the automotive industry in several tasks such as material handling, welding, painting, and part assembly. Therefore, the knowledge and skills to control the electric motors in these manipulators are essential for undergraduate electrical engineering students. Currently, the digital signal processor (DSP) is the core chip in industrial motor-control drives; however, the implementation of DSP control algorithms can be quite challenging for an experienced programmer, even more so for the novice. Considerable research has been done on this topic, although authors usually focus on DSP-based motor drives using popular control techniques such as field-oriented control (FOC). Although highly efficient, this approach is usually reserved for postgraduate education due to its complex structure and functionality. In this paper, the authors present a modular servodrive design on a low-cost, general-purpose microcontroller using the direct torque control (DTC) method, an alternative known for greater simplicity and torque response, compared with FOC. The system design was based on Micropython language allowing the software structure to be more manageable and the code to be more understandable. This design will be useful to undergraduates and researchers with interests in motor control design.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750049 ◽  
Author(s):  
Saber Krim ◽  
Soufien Gdaim ◽  
Abdellatif Mtibaa ◽  
Mohamed Faouzi Mimouni

The conventional direct torque control (DTC), based on the hysteresis controllers and the switching table, operates with a variable switching frequency, which decreases the conventional DTC performances, like the torque and flux ripples. Thus, the space vector modulation (SVM), used in the DTC, ensures a constant switching frequency and improves the DTC performances. The first aim of this paper is to present a comparison study between the DTC with an SVM (DTC-SVM) based on the Proportional Integral regulators (DTC-SVM-PI) and the DTC-SVM based on the sliding mode controllers (DTC-SVM-SMC). These two approaches are complex control algorithms which require faster micro-controllers; therefore the second objective of this paper is to present the implementation of the DTC-SVM-PI and the DTC-SVM-SMC on the Field Programmable Gate Array (FPGA), due to the parallel processing capability of the FPGAs. The two approaches are designed and simulated using the Xilinx System Generator (XSG) and implemented using an FPGA Virtex 5. The simulation results in the transient behavior and the steady state of the induction motor controlled by these two approaches are compared and discussed. The hardware FPGA implementation results show the effectiveness of the FPGA relative to the digital signal processor in terms of execution time.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Bhoopendra Singh ◽  
Shailendra Jain ◽  
Sanjeet Dwivedi

Accurate flux estimation and control of stator flux by the flux control loop is the determining factor in effective implementation of DTC algorithm. In this paper a comparison of voltage-model-based flux estimation techniques for flux response improvement is carried out. The effectiveness of these methods is judged on the basis of Root Mean Square Flux Error (RMSFE), Total Harmonic Distortion (THD) of stator current, and dynamic flux response. The theoretical aspects of these methods are discussed and a comparative analysis is provided with emphasis on digital signal processor (DSP) based controller implementation. The effectiveness of the proposed flux estimation algorithm is investigated through simulation and experimentally validated on a test drive.


Author(s):  
Abidaoun H. Shallal ◽  
Assaad F. Nashee ◽  
Aws Ezzaldeen Abbas

In the industrial application, the induction motors (IMs) and the digital signal processing (ZQ28335) combination are very important in the scientific field. Two thirds of consumption of electricity is due to motor driven equipment. The direct torque control (DTC) is the standard of the industry and it has fast response control system applications. The drawback of DTC is the flux and torque ripples in the measurements. The scalar control can be considered as a solution to this drawback but with poor response. Torque and speed of IM are controlling individually, the variable speed drive (VSDs) is used. This occurs with variation of the voltage and frequency of IM supply. To decrease the levels of flux and torque ripples, 3-level inverters represent an attractive technique. The compromise of a huge flux and torque at the beginning level and low values at steady state of operation is crucial to ensure better stability with feedback linearization of the nonlinear behavior. In this paper, VSD with DTC IM with multilevel inverter with the newest version of ZQ28335 digital signal processor (DSP) is proposed. Emulation and the results of experiment through DSP ZQ28335 make certain correct dynamic response to the operations of torque and flux.


Sign in / Sign up

Export Citation Format

Share Document